
TUGboat, Volume 4, No. 2

Don also showed a simple way to find out what

is doing:
RUN TeX
\relax
\showhyphens{ . . .)

AB many words as desired can be entered at once;
-4 hyphenation points will be shown for each word.
Actually, l$jX finds two hyphenation points are
found in Di-jk-stra; one of them is right.

T@ VS. I N I W

David Fuchs

This note deals with w vs. INI'IZX, \dump,
FMT files, and how to make a 'pre-loaded' W.
Those who have already seen this information on the
l&Xha,x computer bulletin board may be interested
to read the last paragraph, which is new.

First, a review. In the best of all possible worlds,
there would only have to be a single version of m.
Every 'QX file would start with a line that \ input a
big package of lots of macros and fonts. In the real
world, reading many macros each time you run TfjX
can become fairly tedious because it is not instan-
taneous. Reading in fonts is even slower, since most
systems take their time in opening files, and each
font mentioned requires w to access a separate
TFM me. To help speed things up, we introduced the
FMT file. INIW is able t o read in macros and fonts
(in fact it can do everything T@ can) and then it
can dump its entire internal state out into a single
me when i t is given the \dump command. Such a file
is called a FMT, or 'format' file. Thus, if we:

RUN INITM
\ input p l a in

\dump
INIW will exit and leave us the file PLAIN. FMT. We
can then run 'QX (or INIT@, for that matter) and
say:

RUN TM
&plain

and we'll be in exactly the same state we were in be-
fore we did the \dump above. Thus, we can continue
by saying \ input myfile, and 7l$jX will behave as
if we had \ input p l a in and then \ input myfile.
We have already won, because it is faster to read in
PLAIN. FMT than i t is for TJ~X to process PLAIN. TeX
from scratch.

In fact, i t was not necessary actually to say
&plain t o regular 'QX, because it automatically
r e d s in PLAIN. FMT, unless you override i t by saying
&fancy or something. (Of course, I N I W does not

automatically read in PLAIN. FMT if we don't ask for
another FMT file; otherwise there would be no way
to create PLAIN. FMT in the first place!) If you have
another set of macros, say THESIS. TM, you could:

RUN INITM
\input t hes i s

\dump
to make THESIS .FMT, and then users of that macro
package would be able to get their jobs going quickly
by saying:

RUN TM
%thesis mythesis

(\input is assumed even after the &thesis.)

On some systems, this is as far as we can go:
instead of reading lots of files and doing lots of
processing to get TJ$ set up to read the user's input,

need only read one FMT file each run, and do a
little processing. But FMT files are pretty big; maybe
there is an even better way to go. Well, consider a
system on which the user is able to halt a program
in mid-execution, and save away the entire thing to
be continued at a later date. If ?IF;Y with no FMT file
built-in is called 'VIRW, then we can build a TEX
with PLAIN. FMT built-in by:

RUN VIRTM
&plain
(Wait for TeX's * prompt, and then HALT it)
SAVE TM

If a T@ wizard does this and puts the results on a
common system area, then when users give the TeX
command they will actually get a copy of with
PLAIN already set up. If it only were that simple
everywhere! There are a few things that need t o
be considered before you attempt to do this sort of
thing on your system. We have to delve deeper into
the implementation . . .

When the user runs this saved TEX, is it started
up from the beginning or is it continued from where
it left off? In all the systems I've seen that have this
sort of capability, the program is actually restarted
from the beginning, but the global data areas are
not re-initialized. Well, that's ideal for w, be-
cause of l)?J?s use of a magic global variable called
ready-already. When l'@ starts up, it takes a look
at ready-already (without first assigning a value to
it). If the value is not 314159, then TQX figures
that there is not a FMT file built-in, so it goes ahead
and initializes itself, and reads in PLAIN. FMT (unless
the user asks for a different FMT file). Then it sets
ready-already to 314159, in case the user decides
to halt execution and save the core image. If the

core image were then to be restarted, ready-already
would still be 314159, and TpjX would realize that

TUGboat, Volume 4, No. 2

it already had a FMT file loaded in, so it would skip
over the whole initialization process.

Great. But there are problems. On some systems,
the runtimes are completely oblivious to being inter-
rupted and restarted. On these systems, the scheme
described above works fine. Other systems, however,
require the program to have come to a graceful exit
before being saved; otherwise when it is restarted,
everything will run amok. (Typically, the runtime
might become confused by the fact that the log file
was not closed when the core image was saved.) On
such systems, you'd think you could build a T@
with PLAIN. FMT built-in by:

RUN VIRTEX
&plain
\end
SAVE TEX

because the \end will cause l&X to complete its
execution by 'falling out the bottom.' The only
problem is that, just before it does this, T@ sets
ready-already to 0. The idea behind this is that
if you are running on a system in which global
variables are initially random, and you get put in
the same spot in real memory as an old QjX job,
then your 7JjX might get fooled into thinking that
i t has a FMT built-in (since the prior T@ job left
ready-already a t 314159), when all it really has is the
leftrover internal state of someone else's W job. If
the last job cleared ready-already to zero, then
you have less chance of being fooled, so this is what
we have W do by default. On the other hand,
the previous job might have gotten interrupted in
the middle, and you'd be fooled anyway, so on this
kind of system you're best off using another tech-
nique for checking built-in-ness. Anyway, the point
is that you should remove the final ready-already :=

0 if you have the kind of system that requires you to
say \end to get all the files closed and other things
cleaned up before saving a W+ (FMT file).

The astute reader may be asking "That still
doesn't explain why there needs to be INIW as
well as VIRTQX. Why aren't things set up so that
we can just

RUN VIRTEX
\ input p l a in
HALT
SAVE TEX ?"

The answer is that V I R W is missing one or two
capabilities that INIW has. If you take a look
a t the WEBlanguage source for QjX, you'll see that
there are two macros, named INIT and TINI, that
delimit various sections of code. The idea is that if
you Tangle TeX.WFB with INIT and TINI defined as
null, then you'll get an INIW when you compile

the resulting Pascal program. If INIT is defined to
evaluate to '(', and TINI 'I1, then when you Tangle
you'll get almost the same Pascal program, but with

portions commented out. Compiling this program
gives VIRW.

Well, what are the sections that are commented
out, and why? The code in question consists of the
modules that initialize w s hash tables, read in the
POOL file, and process hyphenation \patterns. We
can get away with this because the hash table, string
pool, and hyphenation trie all get dumped to the
FMT file, so n o n - I N I W need not be able to recreate

them from scratch. This is strictly an efficiency
move, since there is no reason to bog regular
down with the extra code and data space necessary
to process these data structures. Only the missing
\pa t te rns primitive can be detected by the ordi-
nary user, but only foreign language hyphenation
hackers should be messing with that.

The other code not in V I R W is the stuff that
handles \dump itself. Of course, if you have an
infinitely fast machine with no address-space lirnita-
tions, and if extra memory is free, then a simple
change to would let it load \pat terns and
do \dumps, and INIW could be thrown away.
Actually, so could FMT files, and the \dump feature.

Early tests on IBM VM/CMS systems seem to
indicate that if the FMT files are blocked up into
very large records, the system is able to process
them quite quickly, so it is not necessary to do
pre-loading. It turns out to be convenient to have
seperate INIQX and V I R W executable programs
on this system, however. The advantage is not only
that V I R W is somewhat smaller due to the miss-
ing INIT code, but we also turn on the DEBUG-GUBED
and STAT-TATS switches in INIW, and compile it
with the optimizer turned off and the full run-time
checks turned on. Thus, INIW is a relatively large,
slow W , but it is good not only for creating new
FMT files, but also to help check out any suspected
bugs in QX, as well as help in heavy-duty macro
debugging.

David Fuchs

There were a few typos in the max sum-
mary in the last issue of TUGboat. Page 6, second
column, last paragraph should say 0\, not 0/.
Similarly, page 7, line 7 should say 0\ instead of
just Q. Finally, the program example in the right
column should have 8em removed in two places. This

TUGboat, Volume 4, No. 2

might be a good place to mention that there is one
more new feature in WEB: due to popular demand,
the format of change files has changed. The new

system lets you change just the middle of a module,
and also warns you if the code you're changing has
changed itself. Here's how i t works: The change file
has any number of changes of the form

(Comment lines)
Ox
(Old lines)

QY

(New lines)
Qz

When Tangle or Weave sees a line that matches the
f i s t "(Old line)", it checks that all the "(Old lines)"
match the main web file. If not, an error message is
given. In either case, the "(Old lines)" are dmarded,
and the "(New lines)" take their place. Comments
can be given on the Qx, Qy, and Qz lines, and b e
tween changes. All Ox, Qy, and Bz's must be a t the
beginning of a line.

To help you bootstrap the new Tangle and Weave,
i t may help to know that the code which has changed
was in non-system-dependent modules, so your old
change files should (almost) work with the new web
files when run on the old Tangle. So you should be
able to create a working new Tangle easily, using
your previous change file; and you can test i t out
by making a new-format change file for Tangle and
seeing if the new Tangle can recreate itself.

The 'almost' is because you may have to change
\count0 to \pageno, to conform to the new TEX.
You may also have to change 8's in w files, and
lots of 00's in WEB files, to "s, since tilde is now
the tie character. Also, take a look at the note
in TeX82.DIF about the big \ s e t and \ the change
introduced in version 0.98 to see if that affects you.
Don't let all this scare you; there haven't been any
problems reported on the systems that have already
been done.

A few people have gotten into trouble by trying
to alter Tangle to output all reserved words and
identifiers in lowercase. Note that Tangle looks back
in its output buffer for things like MOD and D I V to
help i t decide when it's OK to do constant folding. If
you aren't careful, you'll end up with a Tangle that
outputs incorrect programs. The red WEB manual
has a Tangle listing with an index entry 'uppercase'
that points to all the relevant modules.

Most of our WEB programs now include a 'history'
feature that keeps track of how the run went.
Generally, the results are either 'good', 'warning
issued', 'error encountered', or 'fatal error'. The his-
tory variable is used to print a final status message

as each program ends, and it can also be used to
send a status code back to the operating system on
those systems that support such things.

There are a few things to watch out for when
installing the new TjijX. The module "(Globals
in the outer block)" has been renamed "(Global
variables)", so you should check that your change
file always refers to " (Global . . .)" or " (Glob . . .)".
Also, all references to singleletter identifiers that
used to look like "x" are now in the form "lxl".
This may affect your change files slightly. Similarly,
$\ ldots$ has been changed to \dots in many com-
ments; a few files that used to use \ifodd now
use \ i f even (which takes a number rather than a
counter as a parameter); \ i fabsent is now called
\ifvoid. All instances of "debug", "init", and
"stat" have Q! in front of them, so that they will
be indexed. Discretionary hyphens (\-) have been
removed from words that w82 can hyphenate.

The module that defines the macros "qi" and
"qo" now also defines "hi" and "ho" , so if this
module is in your change file, you'll have to alter
it in the obvious way. Similarly, the module that
defines "setglue-ratio-zero" now includes two new
macros, "float" and "unfloat", to aid in porting TEX
to systems where "glue-ratio" can not be "real".
The macro "float-const" has been added to point
out the few places that use a floating point constant
in the code.

All of our WEB programs that use the procedure
"inputln" now remove spaces at the end of lines.
This means that all input files and macro packages
will be impervious to being moved to and from fixed-
linelength systems. Since most change files include
an altered version of "inpuLln" , you'll probably have
to change a little code here.

Some of the modules in T@ that changed in
interesting ways (interesting for the rn installer,
anyway) can be found by searching for the strings
LLwlog"l "wterm", "name <= 16", "name > 16" and
"readopen" in TeX. WEB. Also note a change of vari-
able name ("n" vs. "m") in "(Input the first line
. . .)" . The "input-ln" procedure now has a second
parameter that tells whether it should do an initial
"get"; this simplifies the reading of the first line
of \ input and \read files. It also should aid in-

stallation on systems with either 'lazy-lookahead' or
'interactive' terminal files.

A new macro called "wake-up-terminal" is now
called each time ?JjX is about to issue an error mes-
sage. On systems where the user might flush the out-
put to the terminal (with a control-0, for instance),
t h s macro marks all the good times to turn output
back on. In order to help T+$ do this, standard

TUGboat, Volume 4, No. 2

error messages now say "pr interr(~~"message. . . "
instead of "print-nl(ll" ! message. . ." The
"print-err" takes care of printing the exclamation
point and space, after it calls "wake-up-terminal".

Note that "wake~up~terminal" is called from a few
other places as well.

Other items from =ax: On Tops-20, the 'log
a e ' spoken of in the W o o k will have an extension
of . LST, and on VPX/TMS, it will be .LIS, so as to
avoid conflicting with .LOG files produced by batch
jobs. The new extensions were chosen to match
the systems' conventions about compiler listing file
names (T&Y is a compiler, after all).

Watch out for an unfortunate 'feature' of
\everypar: If a paragraph begins in a group, as in
. . . \vsk ip 5pt <\it Horizontal mode . . . then
the effects of the \everypar are local to that group
(except for \globals, of course) even if the group
ends before the paragraph does.

The VM/CMS version of 'I)$ that is now avail-
able through our standard distribution channels rep-
resents the combined efforts of many people, who I
won't list here for fear of leaving someone out. Lf
you have an I ' M system that you'd like to be able
to re-compile TJ$ on, you should be aware of a bug
in the Pascal/VS optimizer found by Craig Platt.

Pro- foo;
var i : integer;

procedure changeit; forward;

procedure dozt;
begin
2 := 1;
changeit;
vriteln('Shou1d not be one: ', z : 1);
end;

procedure changeit;
begin
2 := 2;
witeln('Shou1d be two : ' , z : 1);
end;

begin
doit;
end.

The Pascal/VS developers have a fix for this, but the
procedure for obtaining it is totally obscure. You're
on your own, as far as I can tell.

Here are the current contents of the "Red Alert"
file mentioned above:

A few bugs were discovered in 0.999. Details
of the changes may be found at the end of the
TeX82. BUG me. The TRIP files had to be modifled
slightly to accommodate these changes. There was
also a change to the W o o k to make it consis-

tent with the fact that \ input files no longer have
a blank line appended automatically.

A bug in WEBHDR caused index entries to have
double Q's where there were supposed to be single
Q's. This error shows up in all the red manuals.

A bug in Weave caused any unchanged module
followed by a module whose first line had changed
to be incorrectly marked as changed. This is fixed
in Weave 2.2 with a small change in the logic of
"get line".

A minor change to \f insmOsh in PLAIN. TM.

And here's what TeX82.BUG has to say about
changes made after the Version 0.999 red listing of
w82 (these changes are shown in Qx, Oy, Oz for-
mat for clarity; they are not meant to be used in an
actual change file):

248. Module 1215, allow space in \read n to \cs

(by FY, July 25, 1983)

Ox patch in getr-token routine
begin restart : gettoken;

OY
begin restart : repeat gettoken;
until cur-tok <> space-token;
07,

249. Module 498, we must stack the current if type

(Nl July 27)

Ox patch in conditional routine
begin O(Push the condition stacko);

O+save-condptr := conLptr;O/

OY
O! thkif : smalLnumber; {type of this conditional)
begin O(Push the condition stacko);

O+save-condptr := conbptr; thisisif := cur-chr;O/
Oz

Also replace cur$ by this-if in modules 501, 503, 506.
The following patches do only what is necessary to
make things work:

Ox
printcmbchr($test cur-if);

asr
przntcmdchr(2f-test, thixif);

02

Ox

if cur-if = if-intcode then sca~in t
Q+elee scannormddimen;

Q
if this-zf = if_intcode then sca~in t

O+else scannonnddirnen;
oz

Ox

if cur-if = $char-code then b := (n = cur-chr)
O+else b := (m = cur-cmd);

OY
if thziif = ifchar-code then b := (n = cur-chr)

O+else b := (m = cur-cmd);
Oz

TUGboat, Volume 4, No. 2

250. Module 507, \ i fx need not put a control sequence
in hash table (July 29)

ax
gettoken; n := cs-ptr; p := cur-cmd; q := cur-chr;
gettoken; if cur-cmd <> p then b :=false

QY
getnezt; n := cs-ptr; p := cur-cmd; q := cur-chr;
getnezt; if cur-cmd <> p then b := fake
02

251. Module 86, message is lost
(noticed by HWT, July 31)

ax
print(". . . "); prinkln; return;

QY
print(". . . la); println; update-terminal; return;
oz

252. Don't put empty at end of \input file! (Aug 1)
[This simplifies the rules and the program, and
also gets around a bug that occurred a t the end
of files with \endlinechar < 0.1

Ox Module 362:
0 An empty line is inserted at the end of the file, if the
last line wasn't already empty, because linpuklnl
sets Ilast := first] when it discovers an 1 eof 1 .
0-empty line at end of fileO)

O(Read next line of file into I buffer 1 , or
Jgoto restart) if the file has ended~)=

begin incr(1ine); first := start;
if not force-eof then

begin if znputln(cur_file, true) then {not end of file)
*up-the-line {this sets Ilzmitl)

else if limit <> start then finup-the-lane
{if Ipawingl, the user can add more lines}

elee force-eof := true;

v
0 O(Read next line of file into) bufferl, or

(goto rest&(if the file has ended~)=
begin incr(1ine); fist := start;
if not force-eof then

begin if inputln(cur-fle, true) then {not end of file)
finnup-the-line {this sets I limatl)

elae force-eof := true;
Oz

*** The changes above went into Version 0.9999,
which was widely distributed.

253. Ridiculous blunder made in change 146
(found by FY, August 16)

Ox Correction to module 497
elee loopO+begin q := condptr;

if lznk(q) = p then
begin type(p) := 1; return;
end;

if q = null then confuswn("if ");
0: this can't happen if){\quad if0)

q := link(q);

OY
elm begin q := c d p t r ;

loop0+ begin if q = null then confusion("if ");
0 :this can't happen if){\quad $0)

if link(q) = p then
begin type(p) := 1; return;
end;

q :=link(q);
end;

02

254. Minor amendment to stat(s) printing
(cf. change 129) (August 16)

Ox in module 1334
wlog-ln(' ', str-ptr - an&str-ptr : 1,

' s t r ings out of ',
mazstrings - initstr-ptr : 1);0/

OY
dog(' ', str-ptr - inztstr-ptr : 1, - s t r ing ');
if str-ptr <> znztstr-ptr + 1 then wlog('s ');
wlog-ln(' out of ',

Oz

255. Bug in \xleader computations
(found by FY, August 18)

Ox in module 592
O! lq,O! k,Q! lz: integer;

{quantities used in calculations for leaders)

OY
0 ! lq,O ! 17 : integer;

{quantities used in calculations for leaders)
oz

Ox in module 626
begin edge := cur-h + rule-wd;
O(Let (cur-hl be the position of the first box, and

set]leader-wdl to the spacing between
corresponding parts of boxesa);

while cur-h + leader-wd <= edge do
O(0utput a leader box at Icur-hl,

then advance (cur-h[by (leader-wd[~);

QY
begin edge := cur-h + rule-wd; lz := 0;
O(Let)cur-hJ be the position of the &st box, and

set Ileader-wd + Izl to the spacing between
corresponding parts of boxes0);

while cur-h + leader-wd <= edge do
 output a leader box at 1 cur-hl, then

advance 1 cur-h) by 1 leader-wd + LzJO);
Oz

Ox in module 627
leader-wd := leader-wd + Iz;

QY
oz

Ox in module 628
cur-h := save-h + leader-wd;

OY
cur-h := save-h + leader-wd + lz;
Oz

TUGboat, Volume 4, No. 2

Ox in module 635
begin edge := cur-u + rule-ht:
O(Let lcur-v\ be the position of the first box, and

set /leader-htl to the spacing between
corresponding parts of boxes0);

while cur-v + leader-ht <= edge do
 output a leader box at Icur-vl, then

advance I cur-ul by I leader-ht 10);

QY
begin edge := cur-u + ruleht; lz := 0;
O(Let Icur-vl be the position of the first box, and

set I leader-ht + 121 to the spacing between
corresponding parts of boxes0);

while cur-v + leader-ht <= edge do
 output a leader box at I cur-vl, then

advance I cur-ul by /leader-ht + 1210);
Oz

Ox in module 636
leader-ht := leader-ht + 12;

QY

Oz

Ox in module 637
cur-v := save-v-hezght(1eader-boz) + leader-ht;

QY
cur-u := save-v-height(1eader-602) + leader-ht + lz;
Oz

Also insert the following in modules 619 and 629:
0 ! lz : scaled; {extra space between leader boxes)

256. \/ should apply to ligatures! (August 20)

Ox in module 1113
var f : intemdfont_number;

{the font in the I char-nodel)
begin if &-char-node(tad) and (tad <> head) then

begin f := font(tad);
taiLappend(new-kern(char-italic(f)

(char-info(f)(character(tail)))));

QY
label ezit;
var p : pointer;

{/char-nodel at the tail of the current list)
0 ! f : intema4fonLnumber; {the font in the I char-nodel)
begin if tail <> head then

begin if &char-node(tail) then p := tad
else if type(tai1) = ligature-node then

p := lzgchar(tail)
else return;
f =: font(p);
taiLappend(new-kern(char-italic(f)

(char-info(f)(character(p)))));
02

QI later in that same module
end;

Q7
ezit: end;
02

258. Redundant code eliminated (August 27)

Module 531 needn't set and reset namcinprogress
[but it's harmless].

259. Bug: \input shouldn't occur during font size spec
(Spivak; fixed August 27)

Qx module 1258
0 O(Scan the font size specificationO)=

QY
0 O(Scan the font size specificationO)=
name-inprogress := h e ;

{this keeps !cur-name1 from being changed)
02

Ox module 1258
elee 8 := -1000

QY
elm s := -1000;
name-inp~ogress := false
Qz

261. Serious data structure error
(found by Todd Allen, August 29)

Qx module 478 (an error introduced in change 231)
q := k t o b ; link(p) := lank(temp-had); p := q;

QY
q := thctob;
if link(temp-head) <> null then

begin linR(p) := link(temp-hed); p := q;
end;

Oz

262. Minor patch for efficiency (August 29)

Qx module 466
begin store-new-token(info(7)); r := link(r);

QY
begin faststore-new-token(info(r)); r := link(r);

