
TUGboat, Volume 8 (1987), No. 2 131

MFtool: A Descript ion of a METAFONT

Script-Driven Processing Facility

John M. Crawford

Ohio State University

I thought I might take a moment to describe some

of the elements of an environment I've hacked

together which helps me in generating fonts using

METAFONT. I wanted to develop a mechanism

which would allow me to generate new fonts with

METAFONT. on demand, without much overhead

on my part. What I've come up with is a file-

driven facility which allows me to generate fonts

from a set of what I'll call script files. Using

the command procedure language available with

my operating system (Primos). I've put together

this processing facility which provides the ability

to make repeated invocations of METRFONT while

varying specified elements for each call. Perhaps

a similar solution could be designed for any given

operating environment. Particular elements of this

system were added as individual needs arose. so the

system design is not necessarily very elegant.

A major element of this scripting file definition

describes the font and magnifications desired. This

information is provided as a text prefix of the font to

be generated. followed (optionally) by the magstep

a t which the font is to be generated. Multiple

requests for a font at various magsteps can be

scripted by specifying magsteps within parentheses.

A file might then contain

{ tfm loaded by plain TeX 3
cmrlO (0 0.5 1 2 3 4 5)

cmrl2 (0 0.5 1 2)

cmr17 (0 0.5 I 2)

This example would invoke METAFONT fifteen

times. We also see an example of a comment.

Comments may be indicated in two ways: Text

preceded by a left curly bracket is discarded. If any

given line of text has a space in column 1, then that

line is also treated as a comment and ignored.

This system also allows one to select specific

base files. or include METRFONT specifications to

be fed to METAFONT. For example,

spec:\mode=qms

base : &cm

could be specified: this must be done before the fonts

are chosen. I've also included labels and an .'ignore

until label" goto facility. Additionally, to improve

checkpointing of output, text can be displayed in

screen traffic. with a "type" directive. With these

elements, I've been able to build specification files

and font family files which allow me to generate

various sets of METAFONT fonts quickly.

As an example, I wanted to generate the META-

FONT logo font for use with a personal computer

preview package, mainly as a test. I chose to

create a new base file. which specified some new

mode-def's I wanted to try. After creating with

INIMF a base file called JMC (my initials) containing

three specifications for preview fonts, I ran a file

similar to the following:

base : &jmc

spec:\mode=prevlew

logo10 (0 0.5 1 2)

spec:\mode=prevleww

logo10 (0 0.5 1 2)

spec:\mode=prev~ewww

logo10 (0 0.5 1 2)

With that, I'd generated the GF files and TFM file

which I'd need to later use the LOGO font on the PC.

In actuality, I can specify several script files

to process. I generally divide files into FONT. BASE

and SPEC script files. This allows greater flexibility

when building a script for a new run. By extending

and modifying this basic font generation scheme.

I've been able to build various sets of fonts easily.

