
TUGboat, Volume 9 (1988), No. 1 

Queries 

Automatic Page Balancing Macros Wanted 

One of the shortcomings of 'l&X (all right, all right, 

the only shortcoming) is its inability to handle page 

makeup simply. If one wishes (as one should) 

to find the most elegant pagebreaks, one must go 

into one's file and manually insert \breaks and 

~\looseness=1\tolerance=2000.. . \par)s or add 

lines of the form 
\ifnum\pageno=68 \global 

\advance\vsize by-l\baselineskip\fi 

\ifnum\pageno=72 \global 

\advance\vsize byl\baselineskip\fi 

to the end of \plainoutput. 

Altering the \vsize by one line in either 

direction (but not more) is a standard trick of good 

typesetting, but both pages of a spread must be the 

same size. 

If one is unfortunate enough to have an article 

or chapter that has long unbreakable displays and 

more insertions than pages, one can end up spending 

altogether too much time determining pagebreaks. 

While, admittedly, it may be perfectly legitimate 

to expect an author to struggle with his file over 

half a dozen or so runs to make it perfect, a 

typesetter's time is much too valuable to indulge in 

such foolishness. 

I had thought that it would be a simple 

matter to alter \plainoutput to (\if odd\pageno 

\oddpageout \else \evenpageout \f i), where 
\evenpageout would define a \vbox called \even- 

pagebox while the analogous \oddpagebox was 

--- - 
created. Once one has the two boxes, one would 

add the badnesses and, if the sum is greater than, 

say, 2000, lengthen or shorten the \vsize by 1 

\baselineskip and \unvbox both boxes. 

What a simple idea. I thought. All I was 

worried about at  first was insertions: I had no very 

clear idea how they would go back on the list of 

recent contributions. Then I discovered that there 

was no way for 'l&X to tell me how bad a \vbox 

was before it was shipped out! 

Is there a Grandmaster or Wizard out there 

who can show me how to discover the badness of a 

box before it's too late? 

Frederick H. Bartlett 

The Bartlett Press, Inc. 

Inverted Pyramidal Titles 

Stephen C. Lipp's request (8(3): 326) for a title 

macro that (i) requires only spaces between words, 

(ii) capitalizes, (iii) double-spaces, (iv) centers, 

(v) has an inverted pyramidal shape, (vi) preferen- 

tially breaks at commas, and (vii) smoothly varies 

line length is hereby granted: 

\newcount\initiallinesdone 

\newcount\finallinesdone 

\newcount\endhere 

(\catcode'\,=\active 

\gdef \ invpyramid#l#2~\ca tcodec \ ,= \ac t ive  

\def,{\char"2C\penalty-5000\ 3% 
\multiply\normalbaselineskip by2 

\normalbaselines 

\parfillskip=Opt\parindent=Opt 

\leftskip=Opt plus9pt minus9pt 

\rightskip=\lef tskip 

\endhere=O\initiallinesdone=#2 

\loop 

\everypar=(\prevgraf=\initiallinesdone) 

\global\setboxO=\vboxC 

\parshape=12 lpc25pc 2pc23pc 3pc21pc 

4pc19pc 5pc17pc 6pc15pc 7pc13pc 

8pcllpc 9pc9pc 1Opc7pc 11pc5pc 

12pc3pc 

\noindent\uppercase{#l}\endgraf 

\global\finallinesdone=\prevgraf) 

\ifnum\endhere=l 

\global\advance\endhere by1 

\else 

\ifnum\finallinesdone>12 

\global\advance\initiallinesdone 

by-2\global\finallinesdone=ll 

\global\advance\endhere by1 

\f i 

\ifnum\finallinesdone<l2 

\global\advance\initiallinesdone 

by 1 
\else 

\global\advance\endhere by2 

\f i 

\f i 

\ifnum\endhere<2 

\repeat 

\boxO))) 

Example (I fudged the example with a \kern 

- 4 . 1 6 6 6 7 ~ ~  since this column is 8 i  picas narrower 

than the measure assumed for \invpyramid): 

\invpyramidiThis is a long, ses\-qui\- 

pe\-da\-lian, verbose title37 



TUGboat, Volume 9 (1988), No. 1 

THIS IS A LONG. SES- 

QUIPEDALIAN, 

VERBOSE 

TITLE 

The second group reflects the user's guess 

of how many lines the title should take up. I 

thought that this one would take four, so I set 

\ in i t ia l l inesdones  to 7. If the guess is too high, 

the result may be rather ugly, so use 11 - (guess) 

instead of 12 - (guess). (This is not strictly 

necessary, but it speeds the process up at a small 

cost in human thought.) 

The \parshape is not variable; that is, it must 

be determined afresh for each \hsize (unless the 

user wishes to use a variable dimension, as Knuth 

did in his answer to Exercise 14.18 on p. 315 of The 

l&Ybook, and further complicate the \looping). 

If the user wishes to break at commas even 

more often, he could increase the \penalty to 

-9999. 

If the user wishes to discourage (or encour- 

age) hyphenation, he could give \pretolerance, 

\exhyphenpenalty, and \hyphenpenalty new val- 

ues. 

If the user wishes to allow more variation ftom 

a perfect pyramid, he could increase the \ l e f t  skip 

and \ r ightsk ip .  

The subtle part of this macro is the \loop and 

its use of \prevgraf. 

Without the \loop, it is obvious that only titles 

that are exactly 12 lines long will have appropriately 

narrow last lines. So, at the end of the first pass, 

rn checks \f inallinesdone. If \f inal l inesdone 

is 12, we stop and set the \vbox. If (as is more 

likely) \f inal l inesdone is less than 12, we add 1 

to \ i n i t i a l l i nesdone ,  which fools \parshape into 

setting the first line shorter, and try again. 

If \ f inal l inesdone is greater than 12, 1 

is deducted from \ in i t i a l l i nesdone  and 1 is 

added to \endhere. Being interpreted, this means, 

"There's no way to make the last line 3 picas wide, 

so I'm going to do the next best thing." 

It is assumed that the user's title is less than 

approximately 168 picas long. If it is longer, 

then the \parshape will have to be respecified 

for more than 12 lines. The attentive reader will 

note that an error (and a terrible result) would 

ensue if this condition is not met, for that would 

ensure that the very first pass would produce a 

\f inal l inesdone greater than 12, which would 

cause \ i n i t i a l l i nesdone  to be reduced to -1, 

which will not allow. Thus, instead of 12 

lines, you'd get about 20, the last 9 of which would 

all be 3 picas wide. In ten-point roman, however, 

168 picas is about forty-five words, which is too 

long for any reasonable title anyway. 

Frederick H. Bartlett 

The Bartlett Press, Inc. 

Logarithmic Time Scales 

I should like to make a first (approximate) stab 

at responding to James Alexander's request in 

(8(2): 216) for a time scale macro. 

I should admit immediately that there is a lot 

of grunt work to be done: I haven't (1) provided 

the necessary code to read dates and events from 

a separate file, (2) given a method for producing 

a linear time scale, (3) provided a method for 

determining the length, starting point, and finishing 

point of the scale, (4) met Alexander's specifications 

for typing the entries, or (5) addressed the problem 

of clustered entries. 

Items (1) and (2) seem to me quite straight- 

forward; I'm just too lazy to complete them. Item 

(3) is slightly more difficult: if you absolutely must 

have only two parameters to the \entry macro, 

you could have determine the value of what I 

call \exponent by dividing the length of a \hbox 

containing the date string by the width of a number 

in the current font. A new command, \parse, 

say, could then determine \ in teger  and \decimal 

(\def \parse#l#2//{\integer=#l\decimal=#2)). 

Item (4) is more difficult still: you must either 

have the user specify the three   dim en)^ or run TJ$ 
on the file twice: once to get the logarithms of the 

first and last dates and once to set the scale (if the 

length of the scale is not equal to \vsize, the user 

would have to specify it-unless you want !I&X to 

determine an optimum scale length). 

Item (5) is a real bear. I don't see how Tj$ 

could remember an arbitrary number of dates to 

see if they are "too close" to one another (if it 

can, then rn could also give the optimum scale 

length). Given a presorted list, however, it might 

be possible. The solution seems simple for a pair of 

close entries; if there are three or more close entries, 

though, I don't see an immediate solution (besides 

increasing the scale length). 



TUGboat, Volume 9 (1988), No. 1 

What attracted me to this query was the 

challenge of coercing TEX into doing logarithms. 

In solving this puzzle, I discovered (and if this is 

documented in The l)jXbook, I, at least, couldn't 

find it) that, while m will add, subtract, and 

divide in the range ~k2147483647, it will multiply 

only in the range f 1073741823. 

Thus, my approximation algorithm was limited 

by max(log(n + 1) - log n) x max(\ddecimal) = 

\def\entry#l.#2E#3#4C\integer=#l 

\decimal=.#2pt\exponent=#3 

\f indlog 

\vskip\alog 

\vbox toOpt(\vss\line{\vrule height 

3.59267pt depth-3.35177pt width.3in 

\quad#4\hfil)\vss) 

\vskip-\alog\vskip-\baselineskip) 

\def\findlogI% 

\ifnum\integer=O 

\base=O\basea=\clogi 

\else 

\base=\csname clog\romannumeral\integer 

\endcsname{\advance\integer by1 

\global\basea=\csname clog% 

\romannumeral\integer\endcsname)% 

\f i 

\advance\basea by-\base 

\advance\decimal by-.5pt 

\ddecimal=\decimal 

\multiply\ddecimal by\basea 

\multiply\basea by\tare 

\advance\ddecimal by\basea 

\divide\ddecimal by108850 

\advance\base by32767 

\mult iply\base by 10337 

\divide\base by17169 

\mult iply\exponent by65536 

\alog=\ddecimal sp 

\advance\alog by\base sp 

\advance\alog by\exponent sp 

\multiply\alog by501 

This is only a rough-and-ready version; I 

wanted to get the basic ideas down for others to use 

and improve (especially since poor Prof. Alexander 

has been waiting for this for some months!). I 

suspect that a mathematician (or a more skilled 

w p e r t ,  or both) could squeeze some more accu- 

rate logarithms out of TEX; at a scaling factor of 

50, this is only accurate to within four dots, or 

.9636 pts, on my laser printer. 

Frederick H. Bartlett 

The Bartlett Press, Inc. 


