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Macros 

DDA Methods in '&jX 

David Salomon 

Several macros are presented here that use DDA 
methods to generate lines, circles, and ellipses. 
They are all based on the idea that a curve can be 
drawn in by moving a dot in small steps and 
repeatedly typesetting it. This idea was originally 
suggested by Hendrickson [I] for straight lines, and 

extended by Cameron [2] for wiggly lines. I4W 
users also have line and circle macros available, but 
those are limited to certain slopes and diameters. 

The macros presented here generate lines, cir- 
cles, and ellipses, using DDA (Digital Differential 
Analyzer) methods. DDA is a general name for 
methods that generate geometric shapes using sim- 
ple arithmetic operations, and integers. No mul- 
tiplication, division, square root, or floating-point 
numbers are used. Typically, a DDA method works 
by moving along the curve in small steps, calculating 
the coordinates of the next point (xi+l, yi+l) either 
as simple functions of the current point (xi, y,), 
or using a parametric representation of the curve. 
Thus either xi+l = f(x,, yi) and yi+l = g(xi, yi); or 

(2, Y) = f (4). 
The first macro uses the Quadrantal DDA 

method [3] to produce straight lines of any slope. 
The second macro is a W implementation of the 
Octantal DDA method [3], which is somewhat more 
involved but produces finer lines. The third macro 
implements Bresenham's algorithm [4] for circles; 
and the last two macros, for ellipses, are based 
on the parametric equation of these curves. In 
most of the cases above, the precise shape of the 
curve depends on the size of the basic step, which 
is the value of the \dimen variable \step. It is 
recommended to k s t  experiment with the macros 
using \step=lpt, just to see how the dot is moved 
for any given curve. For production purposes, 
however, it is better to set \step=.25pt, which 
produces a small enough step size such that, in a 
300 dpi output, curves look pretty smooth. For 
higher resolution outputs, the step size should be 
made even smaller. Unfortunately, making the step 
size too small, or generating long curves, may result 
in the dreaded (and, alas, familiar) message: 

! TeX capacity exceeded, 

sorry [main memory size=655361. 

The ellipse macros have another potential prob- 
lem. Large ellipses may cause an arithmetic 
overflow message, due to m ' s  limited capacity. 

The Quadrantal DDA Method 

Macro \qua& typesets a slanted line by using the 
quadrantal DDA method. It works in any mode 
and does not move the reference point. 

The macro has 2 parameters, Ax and Ay, 
which are the horizontal and vertical projections 
of the line, respectively. Since the line starts at 
the current reference point, the two parameters can 
also be viewed as the coordinates of the endpoint 
of the line (relative to the reference point). The 
parameters can be specified in any valid ll5 
dimension, so expansions such as 

\qua& -13pt 5in 

\qua& 25pc -5mm 

\qua& 3cc 3dd 

are all valid. Note the percent signs '%' at the end 
of certain macro lines. They are important because 

converts an end of line to a space, but we don't 
want such spaces to get typeset (try eliminating 
some of the '%' to see what happens). 

To understand the principle of the quadrantal 
DDA method, consider the case where both Ax and 
Ay are positive. The line should go up and to the 
right from the current reference point. The method 
works by typesetting a dot at the reference point, 
then moving it, by the basic step, either up or to 
the right (but not in both directions), typesetting 
it again, and looping, until the dot has been moved 
a distance of Ax in the x direction, and a distance 
of Ay in the y direction. 

Figure 1 shows two such lines, one almost 
horizontal and the other, at 45". Each dot has been 
magnified to a small box. Note how the principle, 
of moving either to the right or up, creates the line 
as a number of overlapping segments. This causes 
the line to appear thicker than it should be. If 
either Aa: or Ay is negative, the dot has to be 
moved to the left or down. Our algorithm thus 
has four parts - macro \doloopA is used if Ax 2 0 
and Ay 2 0 (0" 5 slope 5 90°, the first quadrant); 
\doloopB is used if Ax < 0 and Ay 2 0 (90" < 
slope 5 180°, the second quadrant); and so on. 

The decision in what direction to move is based 
on the value of the \count variable \diff. \dif f 

is initially set to -0.5Ax and is either decremented 
by Ax (if a decision is made to move the dot up), or 
incremented by Ay (if the dot is to be moved to the 
right). By the time the dot gets all the way to the 
end point of the line, the ratio between the number 
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of times it has been moved up and the number of 
times it has been moved to the right is AylAx, 
which is the slope of the line. The algorithm for the 
first quadrant is therefore: 

x := 0; y := 0; diff  := -Ax/2; 
repeat  

plot(x, Y); 
if dzff > 0 

y := y + 1; dzff := diff  - Ax; 
else 

x := x + 1; diff  := diff  + Ay; 

until x = Ax & y = Ay; 

A simple example is a line with Ax = 6 and Ay = 2. 
The algorithm above iterates 9 times as summarized 
in the table. 

dzff 

step x y before after 

1 0 0  -3 -3+2  

For more information on this method, see 
reference [3]. 

Macro \qua& uses the 4 macros \doloopA, 
. . . , \doloopD. However, only one of them is ex- 
panded, depending on the slope of the desired line. 
Macro \point typesets a dot by placing it in a box 

of zero dimensions (see page 389 of [5]). Macro 
\point and a number of registers are used by both 
the quadrantal and octantal methods; a user creat- 
ing a file of macros for either method must include 
the following code. 

i.\newdimen\delta \newdimen\deltay 

2. \newcount\dif f 

3.\newdimen\xstep \newdimen\ystep 

4. \newdimen\step 

5. \newif \if more 

6. % 
7.\def\point#l#2(% keep this percent sign! 

8. \vbox toOpt<\kern-#2 

9. \hbox toOpt€\kern#l. \hss)\vss)% 

lo. \if vmode\nointerlineskip\f i) 

Exercise 1: Look carefully at the way macro 
\point generates boxes. What is the depth of those 
boxes? 

Close to horizontal 4 5 O  

Quadrantal DDA 

Close to horizontal 4 5 O  

Octantal DDA 

Figure 1. Details of Quadrantal a n d  
Octantal  Lines 

Note that \nointerlineskips are inserted 
between the dots when Q$ is in vertical mode. 
This avoids the interline glue which otherwise is 
automatically generated. As a result, macro \quadr 
does not move the reference point and, after each 
expansion, the user should decide whether to move 
it, and by how much. 

i.\def\quadr#l #2 I% keep this % sign! 
2. \deltax=#l \deltay=#2 

3.\xstep=Opt \ystep=Opt 

4. \if dim\deltax<Opt 

5. \ifdim\deltay<Opt \doloopC 

6. \else \doloopB \fi 

7. \else 

8. \ifdim\deltay<Opt \doloopD 

9. \else \doloopA \fi 

lo. \f i) % end of macro quadr 
11. \def \doloopA(% 

12. \ifdim\deltax>\deltay \diff =-\delta 

13. \else \dif f =\deltay \f i 
14. \divide\diff by 2 
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15. \loop 

16. \if num\dif f >O 

17. \advance\ystep by \step 

18. \advance\dif f by-\delta 

19. \else 

20. \advance\xstep by \step 

21. \advance\diff by \deltay 

22. \f i 

23. \pointC\xstepH\ystep3% 

24. \moref alse 

25.\ifdim\xstep<\deltax \moretrue\fi 

zs.\ifdim\ystep<\deltay \moretrue\fi 

27. \ifmore\repeat) 

28. % end of loop for 1st quadrant 
29. % 
30. \def \doloopBC% 

31. \if dim-\delta>\deltay \diff =\delta 

32. \else \dif f =\deltay \f i 
33. \divide\diff by 2 

69. \if dim\deltax>-\deltay \dif f =-\delta 
70. \else \dif f =-\deltay \f i 
71. \divide\diff by 2 

72. \loop 

73. \ifnum\dif f >O 
74. \advance\ystep by-\step 

75. \advance\dif f by-\delta 

76. \else 

77. \advance\xstep by \step 

78. \advance\diff by-\deltay 

79. \f i 

80. \pointC\xstep)C\ystep)% 

81. \moref alse 

82. \if dim\xstep<\deltax \moretrue\f i 

83. \if dim\ystep>\deltay \moretrue\f i 

84. \ifmore\repeat) 

85. % end of loop for 4th quadrant 

T h e  Octantal DDA Method 
34. \loop 

35. \ifnum\diff >O Macro \octnt typesets a slanted line using octantal 

36. \advance\ystep by \step DDA, a method very similar to quadrantal DDA. 

37. \advance\diff by \delta The main difference is the way the dot is moved 

38. \else between repeated typesettings. If the line is close 

39. \advance\xstep by-\step to horizontal (its slope is between 0" and 45") the 

40. \advance\dif f by \deltay dot is moved either to the right, or diagonally (up 

41. \f i and to the right). If the line is close to vertical 

42. \pointC\xstep)C\ystep3% (Ay > Ax or the slope is between 45" and 90°), 

43. \moref alse the dot is moved either up or diagonally. If either 

44.\ifdim\xstep>\deltax \moretrue\fi Ax or Ay is negative, the directions are changed 

45.\ifdim\ystep<\deltay \moretrue\fi accordingly. 
46. \if more\repeat) Fig. 1 shows the way lines appear in this 

47. % end of loop for 2nd quadrant method. The line that is close to horizontal is made 

48. % of several non-overlapping segments; the 45" line 

49. \def \doloopCC% consists of dots laid diagonally. These lines are finer 

50. \ifdim-\delta,-\deltay idiff =\delta than the quadrantal lines since they consist of fewer 

51. \else \dif f =-\deltay \f i dots. 

52. \divide\diff by 2 Because of the rules above, the algorithm 

53. \loop should distinguish eight orientations of the lines, 

54. \if num\dif f >O or eight ranges of the slope (hence the name 

55. \advance\ystep by-\step octantal).  The main macro, \octnt, does exactly 
56. \advance\diff by \delta that. However, the range 0"-45" (octant 1) is 
57. \else similar to the range 315"-360" (octant 8), so they 

58. \advance\xstep by-\step are both handled by macro \loopA. Octants 2, 3 

59. \advance\diff by-\deltay (45"-90°, 90"-135') are handled by macro \loopB, 
so. \f i and so on. We thus end up with just four loop 

61. \pointC\xstep)I\ystep3% macros, instead of eight. Dots are typeset by the 

62. \moref alse same macro, \point, used for lines drawn by the 

63.\ifdim\xstep>\deltax \moretrue\fi quadrantal method. 

a.\ifdim\ystep>\deltay \moretrue\fi x := 0; y := 0; diff := -Ax/2; 
65. \if more\repeat) repeat  
66. % end of loop for 3rd quadrant plot(x, y); 
67. % if diff > 0 
68. \def \doloopD<% y : = y + l ;  x : = x + l ;  
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x:=O; y:=R; d:=3-2R; 

while x<y & 
plot8 (x,y) ; 
if d>O m 

d: =d+4 (x-y) +lo; 

y: =y-1; 

ehe 
d:=d+4x+6; 

x: =x+l; 

endwhile 
if X=Y ~JEQ plot8 (xry) ; 

end; 

Final F'rogram Loop over one octant 

Figure 2. Bresenham's Algorithm for a Circle 

d i f f  := d i f f  - Ax + Au; 15. \else \loopC \fi -- V" " ,  

else 
x := x + 1; diff := diff + Ay; 

until x := Ax; 

And we illustrate the method with the previous 
example; a line with Ax = 6  and Ay = 2. This 
time the algorithm iterates only 7  times, producing 
a finer line. 

diff 
step x y before after 

1 0 0  - 3  -3 + 2  
2 1 0  -1 - 1 + 2  
3 2 0  1 1 - 6 + 2  
4 3 1  -3 -3 + 2  
5 4 1  -1 - 1 + 2  
6 5 1  1 - 1 - 6 + 2  
7 6 2  - 3  

l.\newdimen\Absx \newdimen\Absy 

2.\newdimen\Xstep \newdimen\Ystep 

3. % 
4.\def\octnt#l #2 C% keep this percent sign 
5. \deltax=#l \deltay=#2 

6. \xstep=Opt \ystep=Opt 

7. \if dim\deltax<Opt \Absx=-\deltax 

8. \else \Absx=\deltax \fi 

9. \if dim\deltay<Opt \Absy=-\deltay 

lo. \else \Absy=\deltay \f i 

11. \if dim\deltax<Opt 

12. \if dim\deltay<Opt 

13. \Xstep=-\step \Ystep=-\step 

14. \if dim\Absx>\Absy \loopD 

16. % octants 5 (loopD) & 6 (loopC) 

17. \else 

18. \Xstep=-\step \Ystep=\step 

19. \ifdim\Absx>\Absy \loopD 

20. \else \loopB \fi 

21. % octants 4 (loopD) & 3 (loopB) 

22. \fi 

23. \else 

24. \if dim\deltay<Opt 

25. \Xstep=\step \Ystep=-\step 

26. \ifdim\Absx>\Absy \loopA 

27. \else \loopC \fi 

28. % octants 8 (loopA) & 7 (loopC) 

29. \else 

30. \Xstep=\step \Ystep=\step 

31. \if dim\Absx>\Absy \loopA 

32. \else \loopB \fi 

33. % octants I (loopA) & 2 (loopB) 

34. \f i 

35. \f i) % end of macro \octnt 
36. % 
37.\def\stepxC\advance\xstep by \Xstep 

38. \advance\diff by \Absy) 

39.\def\stepyC\advance\ystep by \Ystep 

40. \advance\dif f by-\Absx) 

41. % 
42. \def \loopAC% loop for octants 1 & 8 

43. \dif f =-\Absx \divide\dif f by 2 

44. \loop 

45. \if num\dif f >O 

46. \stepx \stepy 

47. \else \stepx 
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48. \f i 

49. \pointC\xstep)C\ystep>% 

so. \moref alse 

51. \if dim\xstep<\deltax \moretrue\f i 

52. \ifmore\repeat) 

53. % end of loop for octants 1 & 8 

54. % 
55. \def \loopBC% loop for octants 2 & 3 

56. \dif f =\Absy \divide\dif f by 2 

57.\ifdim\Absx=\Absy \diff=O \fi 

58. \loop 

59. \if num\dif f >O 

60. \stepy 

61. \else \stepx \stepy 

62. \f i 

63. \pointC\xstep)(\ystep)% 

64. \moref alse 

65. \if dim\ystep<\deltay \moretrue\f i 

66. \ifmore\repeat) 

67. % end of loop for octants 2 & 3 

68. % 
69. \def \loopCC% loop for octants 6 O 7 

7o.\diff=\Absy \divide\diff by 2 

71. \if dim\Absx=\Absy \dif f =O \f i 

72. \loop 

73. \if num\dif f >O 

74. \stepy 

75. \else \stepx \stepy 

76. \f i 

77. \pointC\xstep)I\ystep)% 

78. \moref alse 

79. \if dim\ystep>\deltay \moretrue\f i 

80. \ifmore\repeat) 

81. % end of loop for octants 6 & 7 

82. % 
83. \def \loopDC% loop for octants 4 & 5 

84.\diff=-\Absx \divide\diff by 2 

85. \loop 

86. \if num\dif f >O 

87. \stepx \stepy 

88. \else \stepx 

89. \f i 

90. \pointC\xstepH\ystepH 

91. \moref alse 

92. \if dim\xstep>\deltax \moretrue\f i 

93. \if more\repeat) 

94. % end of loop for octants 4 & 5 

Note that \loopA (octants 1 and 8) repeats 
while the x-coordinate of the dot is < Ax. \loopD 
(octants 4 and 5, where x and Ax are negative), 
however, repeats while x > Ax. This works since in 
those octants the line is closer to horizontal. \loopB 

and \loopC, where lines are close to vertical, are 
similar but compare y and Ay. 

The Bresenham-Michener DDA Method 
for Circles 

Because of the high symmetry of a circle, it is a 
particularly easy figure to draw (See [6] for a number 
of circle drawing methods). The method used here 
is efficient since it uses only integers and requires 
only addition, subtraction, and a multiplication by 
4. When this method is implemented as a computer 
program, the multiplication by 4 is usually replaced 
by a shift. rn, however, cannot shift numbers. 
The method is described here in two stages. First 
the basic idea (see algorithm in Fig. 2) is outlined; 
next, the rn implementation is explained. 

The basic idea is to draw a circle of radius R, 
centered around the origin, by starting at the top 
of the circle (point (0, R)) and moving, in small 
steps, along one octant of the circle. Because of 
the symmetry of a circle, each time a point (x, y) 
is calculated on one octant, seven more points- 
on the seven other octants-can be calculated, 
which correspond to the original point. They are: 

(-x, Y), (x, -91, (-9 -Y), (9, XI, (-9, XI,  (Y, --XI, 
and (-y, -x). The algorithm is a simple loop 
that starts at point (x, y) = (0, R) and continues 
while x < y (i.e., over one octant). Each time 
through the loop, the current point (plus the seven 
corresponding points) is typeset, and the algorithm 
moves to the next point by incrementing the x 
coordinate by \step and, from time to time, also 
decrementing the y coordinate (by the same \step). 
Variable \step has to be assigned a value before 
\circle is expanded. 

The only decision that has to be made in 
each iteration is whether or not to decrement the 
y coordinate. This decision involves the auxiliary 
\dimen variable \d whose sign determines the action 
taken. If \d is non-negative then y is decremented. 
Each time through the loop \d is updated. The 
details of updating \d can be found in references [4, 
61 or can be obtained by writing to this author. 

The rn implementation presented here builds 
the circle centered on the reference point. The 
reference point itself is not moved and, after each 
expansion of the macro, the user may want to move 
it explicitly, using appropriate skip commands. 
Macro \circle is a simple \loop construct that 
expands a plot macro to plot the current point 
(actually, eight points), and then calculates the 
coordinates of the next point. Like the macro 
\point used to plot slanted lines, macro \plot 
typesets a dot enclosed in boxes of zero dimensions 
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(this is why the reference point is not affected), 
and in vertical mode, inserts \nointerl ineskip 
between boxes to eliminate unwanted interline glue. 
Again note the percent signs '%' at the end of certain 
source lines. They are important and have been 
mentioned earlier. 

Drawing Ellipses 

The ellipse macros below accept, as parameters, the 
semimajor and the semiminor ellipse axes, measured 
in pt. The first macro generates a canonical ellipse 
(centered on the reference point with a horizontal 
major axis); the second one generates an ellipse 
tilted clockwise 8 degrees. 

Bresenham's method can be generalized to an 
ellipse (Try to do it! This is exercise 2.), but this 
does not give good results because of the symmetry 
of the ellipse, which is not as high as that of a circle. 
In the case of a circle, it is enough to calculate 
one octant and copy it over to the other seven. In 

(a coscp, b sin cp) 

PL 

Figure 3. Ellipses 

the case of an ellipse, one quadrant, at least, has 
to be calculated. Bresenham's method is based on 
looping in equal steps of x, and this produces good 
results in the first octant, since that octant has 
a small slope and does not deviate much from a 
horizontal line. Looping in equal steps of x over 
a quadrant, however, produces dots that are too 
widely spaced at the end of the quadrant (Fig. 3a), 
where the ellipse has a large slope. 

The method used here to draw an ellipse is 
well known [7, 81 and is based on the parametric 
representation of the ellipse: 

x=acos4 ;  y=bsinb.  q5=0 ... 360" (1) 

where a is the semimajor axis and b,  the semiminor 
one (Fig. 3b). The parameter 4 is varied (in small 
steps of d4), over a quarter of the ellipse, from point 
(a,O), (4 = 0), to point (O,b), (q5 = 90"). 

An important property of the algorithm is that 
varying 4 in fixed steps of d4 moves the dot along 
the ellipse in steps that cover variable perimeter 
sizes. Initially, around point (a,O), the step size is 
small, which is appropriate for that region, where 
the ellipse has a large slope. As we move along 
the quadrant toward the final point (O,b), the 
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step size covers larger perimeter increments, again 
appropriate for this region, where the slope gets 
smaller. 

To demonstrate this property, we derive the 
differential of Eq. 1. 

dx=-asin4d4; dy=bcos4d4. 

For the initial steps, where 4 is close to zero, 
dy x b d4 and dx is close to zero. Toward the end, 
where 4 is close to 90°, ldxl x ad4  and dy = 0. 
The perimeter increment is thus initially close to 
bd4 and gets larger as it approaches ad$. Also, 
the ratio between the initial and final perimeter 
increments is approximately bla, which is the ratio 
of the two axes of the ellipse. If a = b, the perimeter 
increment is fixed, which is appropriate for a circle. 

Our method uses the elementary trigonometric 
identities: 

sin(x + y) = sin x cos y + cos x sin y; 

cos(x + y) = cos x cos y - sin x sin y. 
(2) 

Using Eq. 1, we start with 4 = 0 and get: 

xo=acosO=a;  yo=bsinO=O. 
XI = acos(d4); yl = bsin(d4). 
2 2  = a cos(2 d4); y2 = b sin(2 d4). 

And, in general 

x,=acos(idq5)=axAi; y i=bsin( id+)=bxBi .  

The DDA nature of the algorithm stems from the 
fact that we can eliminate the need for calculating 
sin(i d4), cos(i d4) for every value of i. Using Eq. 2, 
it is possible to express both Ai, Bi as functions 

of A,-1, Bi-1 with the result that only sin(d+), 
cos(d4) need be known. 

Ai = cos(i d4) = cos((i - 2)d$ + 2d4) 

using Eq. 2 yields 

A, = cos((i - 2)d4) cos(2d4) 

- sin((i - 2)d4) sin(2d4); 

using Eq. 2 again 

A, = cos((i - 2)d$)[cos2 (d4) - sin2(d$)] 

- 2 sin((i - 2)d4) sin(d4) cos(d$); 

adding and subtracting the same term 

A, = cos((i - 2)d$) cos2(d4) 

- sin((i - 2)d$) sin(d4) cos(d4) 

- sin((i - 2)d4) cos(d4) sin(d4) 

- cos((i - 2)d4) sin2 (d4) 

= Ai-1 COS(~+)  - Bi-1 sin(d$). 

And, similarly, 

Bi = Bi-1 C O S ( ~ ~ )  + Aj-1 sin(d4). 

The initial values are A. = cos 0 = 1, Bo = sin 0 = 

0. Our algorithm can now be expressed as: 

A := 1; B := 0; C := cos(d4); S := sin(d4); 
x := a; y := 0; 
loop 

plot (x, y) plus three symmetric points 
T := A x C -  B x S ;  
B : =  B x C + A x S ;  
A := T; 
x := axA;  y := bxB;. 

while z > 0; 

This algorithm involves multiplications, and 
is therefore considerably slower than Bresenham's, 
but then a circle is just a special case of an 
ellipse. Needless to say, the ellipse macro below 
can be used to generate circles. The macro is a 

rn implementation of the rules above, with two 
exceptions: 

1. In principle, the user should supply a value 
for d4 and the macro should calculate sin(d4) 
and cos(d4). However, since those calculations 
involve fractions, they have to be done, in TEX, 
with scaled numbers, which is time consuming. 
As a result, three pairs of sin(d4) and cos(d4) 
are built into the macro, corresponding to d+ 
values of 2~1120, 2~1240 and 2~1480. Those 
values were selected experimentally, to produce 
smooth ellipses on a 300 dpi output. On higher 
resolution output devices, smaller values should 
be tried, which may result in finer curves. The 
first pair generates an ellipse by typesetting 
120 dots (actually, generating 30 dots and 
duplicating each 4 times), the second typesets 
240 dots and the third, 480. The macro selects 
one of those pairs, depending on the size of the 
ellipse. 

2. can easily operate on integers but our 
problem involves real numbers. Such problems 
are handled in QX in one of two ways. The first 
is to use dimen variables, which can have non- 
integer values; the second makes use of scaled 
integers. Our macro uses the second choice 
and scales all numbers by a \scalefactor of 
10000. 

The following registers and macro are common to 
both ordinary and tilted ellipses. Once again, note 
the similarity of \plotu to the earlier \point and 
\plot macros. 

i.\newcount\a \newcount\A 
2.\newcount\b \newcount\B \newcount\T 
3.\newcount\c \newcount\C 
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4. \newcount\s \newcount\S \newcount\t 

5.\newcount\x \newcount\y 

6.\newcount\scalefactor \scalefactor=1OOOO 

7. \newdimen\unit 

s.\unit=lpt \divide\unit by \scalefactor 

9. % 
lo. \def \plotu#l#2{% 

11. \vbox toOpt(\kernM\unit 

12. \hbox toOpt{\kern#l\unit . \hss)\vss)% 
13. \ifvmode\nointerlineskip\fi) 

The macro for the ellipse. 

i.\def\ellipse#l #2 {% 
2. \A=l0000 \B=O 

3. \ifnum#l>#2 \a=#l \b=#2 

4. \else \a=#;! \b=#l \fi 

5. % d\phi is determined according to the 
6. % value of the semimajor axis 'a'. 
7. \ifnum\a<l5 

8. \S=523 \C=9986 % sin & cos of 360/120, 
9. % correspond to 30 increments of d\phi 
lo. \else 

11. \ifnum\a<40 %over one quarter 

12. \S=262 \C=9997 %For large ellipses, 
13. % here are 60 increments 
14. \else 

15. \S=131 \C=9999 % and, for the largest 
16. % ones, 120 increments 
17. \f i \f i 

18. % 
19. \x=\a \multiply\x by \scalefactor \y=O 

20. \loop 

21. \plotfour 

22. \T=\B \multiply\T by\S 

23. \t=\A \multiply\t by\C \advance\t by-\T 
24. \T=\A \multiply\T by\S 

2s. \multiply\B by\C \advance\B by\T 

26. \divide\B by \scalef actor 

27.\A=\t \divide\A by \scalefactor 

28. \x=\a \multiply\x by\A 

2s. \y=\b \multiply\y by\B 

30. \ifnum\x>O \repeat) 

31. % 
32. \def \plotf our(% 

33. \pl0tui\x3I\y3\plotuC-\x3~\y)% 
34. \plotu(\x3~-\y3\plotuI-\x3~-\y33 

Next, we turn to a tilted ellipse, obtained 
by rotating the canonical ellipse 8 degrees clock- 
wise. Mathematically, rotating a 2D point (x, y) is 
achieved by multiplying it by the rotation matrix 

Thus the general ellipse point (a cos 4, b sin 4) is 
transformed into 

(acos$cos8-bsinbsin8, acos~s in0+bs in~cos8) .  

and the expressions x := a x A, y := b x B, used 
earlier for the coordinates of the next point now 
become 

x:= aAcos8- bBsin8 y := aAsin8fbBcosB. 

The algorithm for the tilted ellipse differs from the 
one 

1. 

2. 

3. 

for the canonical one in three more points: 

Since a tilted ellipse is not symmetric with re- 
spect to the coordinate axes, macro \Plotf our 
cannot duplicate a point as easily as before. A 
look at Fig. 3c shows that, for each point (x, y) 
on one quadrant of the ellipse, point (-2, -y) is 
on the diagonally opposite quadrant but points 
(-x, y), (x, -y) are not on the ellipse. The 
macro should therefore calculate one of these 
points explicitly, using the expressions 

u := aAcos8+ bBsin8; 

w := aAsinB - bBcos8. 

and plot points (u, w), (-21, -w). 

The loop for the canonical ellipse is terminated 
when x reaches zero. This again won't work for 
the tilted ellipse, so the new macro \tellipse 
uses a new count variable to loop 30, 60, 
or 120 times, depending on the size of the 
ellipse. In each iteration, the count variable is 
decremented and compared to zero. 

Because of the additional multiplications nec- 
essary, numbers cannot be scaled as high as in " .  
the previous macro. Trying to scale all num- 
bers with a factor of 10000 causes arithmetic 
overflow, so reduced scaling is used, resulting 
in a less precise shape of the ellipse. 

The algorithm thus is: 

A := 1; B := 0; C := cos(d4); S := sin(d4); 
% : = a  cos8; u : = x ;  
y := a sine; w := y; 
count := 30, 60, or 120 
loop 

plot ($7 Y), (-2, -Y), ('1~9 w), (-'1~7 --w) 
T : = A x C - B x S ;  
B : = B x C + A x S ;  
A := T; 
LA:=a .A;  L B : = b . B ;  

(with a reduced scale factor) 
x := LAcosO - LBsin8; 
y := LAsin8 + LBcos8; 
u := LAcos8 + LBsin8; 
w := LAsinB - LBcos8; 
count := c a n t  - 1 
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while count > 0; 

and the macro is: 

1. \newcount\dphi 

z.\newcount\u \newcount\w 

3. \newcount \ST \newcount\CT 

4.\newcount\LA \newcount\LB 

5. % 
s.\def\tellipse#l #2 #3 #4 C% 
7. \A=10000 \B=O 

8. \d=#3pc \ST=\d 

9. \divide\ST by 786 %since lpc=786432sp 
lo. \d=#4pc \CT=\d \divide\CT by 786 
11. \ifnum#l>#2 \a=#l \b=#2 

12. \else \a=#2 \b=#l \fi 

13.X d\phi is determined according to the 

14. % value of the semimajor axis a. 
15. \ifnum\a<l5 

16. \S=523 \C=9986 \dphi=31 

17. % sin, cos of 360/120, for 30 
18. % increments of d\phi 
19. \else \ifnum\a<40 % over one quarter. 
20. \S=262 \C=9997 \dphi=61 

21. % For large ellipses, here are 60 
22. % increments 
23. \else 

24. \S=131 \C=9999 \dphi=l21 

25. % For the largest ones, 120 
26. % increments 
27. \fi \fi 

28. % 
29. \x=\a \multiply\x by\CT 

30. \multiply\x by 10 \u=\x 

31. \y=\a \multiply\y by\ST 

32. \multiply\y by 10 \w=\y 

33. \loop 
34. \Plotf our 

35. \T=\B \multiply\T by\S 

36. \t=\A \multiply\t by\C 

37. \advance\t by-\T 

38. \T=\A \multiply\T by\S 

39. \multiply\B by\C 

40. \advance\B by\T 

41. \divide\B by \scalef actor 

42. \A=\t \divide\A by \scalef actor 
43. % 
44. \LA=\A \multiply\LA by\a 

45. \divide\LA by 100 

46. \LB=\B \multiply\LB by\b 
47. \divide\LB by 100 

48. % 
49. \x=\LA \multiply\x by\CT \u=\x 

50. \T=\LB \multiply\T by\ST 

51. \advance\x by-\T \divide\x by 10 

52. \advance\u by \T \divide\u by 10 

53. \y=\LA \multiply\y by\ST \w=\y 

54. \T=\LB \multiply\T by\CT 

55. \advance\y by \T \divide\y by 10 

56. \advance\w by-\T \divide\w by 10 

57. \advance\dphi by-I 

58. \if num\dphi>O \repeat) 

59. % 
60. \def \Plotf our(% 

61. \plotuC\x)(\y)\plotu<\u)C\w)% 
62. \ p l ~ t ~ { - \ x ) < - \ y ) \ p l ~ t ~ ( - \ ~ ) C - \ w ) )  

This method is considerably slower than the 
ones for lines and circles because of the multipli- 
cations involved. It tur& out that, even though 
not all the multiplications can be eliminated, the 
method can be made a little more efficient. Refer- 
ence [9] shows how to modify it to include only four 
muliplications (and four additions) per iteration. 
The algorithm is: 

CT := cos8; S T  := sine; 
C D P  := cos dq5; S D P  := sin dq5; 
A := C D P  + S D P  x S T  x CT x (a/b - bla); 
B := -SDP ((bx ST)' + (ax  CT)') / ( ax  b); 

C := S D P  ((~xcT) '  + (axST)') / (ax  b); 
D := C D P  + S D P x  S T x C T x  (b/a - alb); 
D := D - (CX B) /A;  

C := CIA; 
x := axCT;  y := a x S T ;  
count := 30, 60, or 120; 
loop 

plot (x, v), (-2, -y), (u, w), (-u, -w) 
x : = x x A + y x B ;  
y : = x x C + y x D ;  
count := count - 1 

while count > 0; 

The reader is encouraged to implement this in T@C 

Appendix 

The methods described here give reasonably good 
output on a typical 300dpi printer. Sometimes, 
however, high quality output is a must. Here is 
an idea which produces better looking results. It 
is, unfortunately, slow and is more liable to exceed 
W ' s  capacity. 

All the examples above generate the lines and 
curves by typesetting a period. The period has a 
small size but is not small enough for high quality 
results. Using a period from a smaller size font does 
not help much. It turns out that the width of a 
period in font cmrlO is 2.77779pt whereas in font 
cmr5 it is 2.01392pt, almost the same size. 
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To get dots of smaller sizes, we therefore 
suggest typesetting a rule (specifically, a \vrule) 
instead of a dot. The height and width of a rule can 
easily be controlled and our experiments show that 
a rule of dimensions 0. l p t ,  combined with a step 
size of the same dimension, produces fine, smooth 
lines on a 300dpi laser printer. The only change 
necessary is to replace the dot with a \vrule in 
macro \point as shown below. 

\def \vrC\vrule height .  l p t  width. l p t 3  
\def \point#l#2(% keep t h i s  percent s ign! 

\vbox toopt ( \ ke rn42  
\hbox to0pt~\kern#l\vr\hss)\vss3% 

\ i f  vmode\nointerlineskip\f i 3  
\f i 

3 

Answers t o  Exercises 

1. Zero, since the depth of a dot is zero. This is easy 
to verify by \setboxO=\hboxC .>, \showthe\dpO 

2. Generalizing Bresenham's method for ellipses is 
straightforward and produces: 

x:=O; y : = a ;  
D := (a/b)2; d := 2 0  + 1 - 2a; 
while x < y d o  

ploWx, Y); 
i f d < O  

d := d + D(4x +6); 
else 

d : = d + 4 D ( x - y ) + 6 D + 4 ;  
y := y - 1; 

x := x + 1; 
end  while; 
if x = y t h e n  plot8(x, y); 
end;  
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Tests 

Question: What is the difference between these two 
identical twins? 

Answer: The one on the left was done with 
\s tep=lpt ;  the one on the right, with \s tep=.  5pt 

Compare the two diamonds. It is easy to tell which 
parts are done with quadrantal and which, with 
octantal DDA. 

o David Salomon 
California State University, 

Northridge 
Computer Science Department 
School of Engineering and 

Computer Science 
18111 Nordhoff Street 
Northridge, CA 91330 
bccscdxs@csunb.csun.edu 

Editor's note: The methods described in this ar- 
ticle might be applicable to a graphics system of 
the kind sought by David Rogers in his challenge of 
TUGboat 10#1 (p. 39). 

Editor's note: In these macros, the names used 
by several p l a i n  control sequences (\b, \B, \c, \d, 
\S, \t, \u) have been reassigned with \newdimen. 
Beware that these names will remain associated 
with dimension registers even if \begingroup . . . 
\endgroup is used in an attempt to localize their 
effects. 


