
TUGboat, Volume 10 (1989), No. 2

Macros

DDA Methods in '&jX

David Salomon

Several macros are presented here that use DDA
methods to generate lines, circles, and ellipses.
They are all based on the idea that a curve can be
drawn in by moving a dot in small steps and
repeatedly typesetting it. This idea was originally
suggested by Hendrickson [I] for straight lines, and

extended by Cameron [2] for wiggly lines. I4W
users also have line and circle macros available, but
those are limited to certain slopes and diameters.

The macros presented here generate lines, cir-
cles, and ellipses, using DDA (Digital Differential
Analyzer) methods. DDA is a general name for
methods that generate geometric shapes using sim-
ple arithmetic operations, and integers. No mul-
tiplication, division, square root, or floating-point
numbers are used. Typically, a DDA method works
by moving along the curve in small steps, calculating
the coordinates of the next point (xi+l, yi+l) either
as simple functions of the current point (xi, y,),
or using a parametric representation of the curve.
Thus either xi+l = f(x,, yi) and yi+l = g(xi, yi); or

(2, Y) = f (4).
The first macro uses the Quadrantal DDA

method [3] to produce straight lines of any slope.
The second macro is a W implementation of the
Octantal DDA method [3], which is somewhat more
involved but produces finer lines. The third macro
implements Bresenham's algorithm [4] for circles;
and the last two macros, for ellipses, are based
on the parametric equation of these curves. In
most of the cases above, the precise shape of the
curve depends on the size of the basic step, which
is the value of the \dimen variable \step. It is
recommended to k s t experiment with the macros
using \step=lpt, just to see how the dot is moved
for any given curve. For production purposes,
however, it is better to set \step=.25pt, which
produces a small enough step size such that, in a
300 dpi output, curves look pretty smooth. For
higher resolution outputs, the step size should be
made even smaller. Unfortunately, making the step
size too small, or generating long curves, may result
in the dreaded (and, alas, familiar) message:

! TeX capacity exceeded,

sorry [main memory size=655361.

The ellipse macros have another potential prob-
lem. Large ellipses may cause an arithmetic
overflow message, due to m ' s limited capacity.

The Quadrantal DDA Method

Macro \qua& typesets a slanted line by using the
quadrantal DDA method. It works in any mode
and does not move the reference point.

The macro has 2 parameters, Ax and Ay,
which are the horizontal and vertical projections
of the line, respectively. Since the line starts at
the current reference point, the two parameters can
also be viewed as the coordinates of the endpoint
of the line (relative to the reference point). The
parameters can be specified in any valid ll5
dimension, so expansions such as

\qua& -13pt 5in

\qua& 25pc -5mm

\qua& 3cc 3dd

are all valid. Note the percent signs '%' at the end
of certain macro lines. They are important because

converts an end of line to a space, but we don't
want such spaces to get typeset (try eliminating
some of the '%' to see what happens).

To understand the principle of the quadrantal
DDA method, consider the case where both Ax and
Ay are positive. The line should go up and to the
right from the current reference point. The method
works by typesetting a dot at the reference point,
then moving it, by the basic step, either up or to
the right (but not in both directions), typesetting
it again, and looping, until the dot has been moved
a distance of Ax in the x direction, and a distance
of Ay in the y direction.

Figure 1 shows two such lines, one almost
horizontal and the other, at 45". Each dot has been
magnified to a small box. Note how the principle,
of moving either to the right or up, creates the line
as a number of overlapping segments. This causes
the line to appear thicker than it should be. If
either Aa: or Ay is negative, the dot has to be
moved to the left or down. Our algorithm thus
has four parts - macro \doloopA is used if Ax 2 0
and Ay 2 0 (0" 5 slope 5 90°, the first quadrant);
\doloopB is used if Ax < 0 and Ay 2 0 (90" <
slope 5 180°, the second quadrant); and so on.

The decision in what direction to move is based
on the value of the \count variable \diff. \dif f

is initially set to -0.5Ax and is either decremented
by Ax (if a decision is made to move the dot up), or
incremented by Ay (if the dot is to be moved to the
right). By the time the dot gets all the way to the
end point of the line, the ratio between the number

208 TUGboat, Volume 10 (1989), No. 2

of times it has been moved up and the number of
times it has been moved to the right is AylAx,
which is the slope of the line. The algorithm for the
first quadrant is therefore:

x := 0; y := 0; diff := -Ax/2;
repeat

plot(x, Y);
if dzff > 0

y := y + 1; dzff := diff - Ax;
else

x := x + 1; diff := diff + Ay;

until x = Ax & y = Ay;

A simple example is a line with Ax = 6 and Ay = 2.
The algorithm above iterates 9 times as summarized
in the table.

dzff

step x y before after

1 0 0 -3 -3+2

For more information on this method, see
reference [3].

Macro \qua& uses the 4 macros \doloopA,
. . . , \doloopD. However, only one of them is ex-
panded, depending on the slope of the desired line.
Macro \point typesets a dot by placing it in a box

of zero dimensions (see page 389 of [5]). Macro
\point and a number of registers are used by both
the quadrantal and octantal methods; a user creat-
ing a file of macros for either method must include
the following code.

i.\newdimen\delta \newdimen\deltay

2. \newcount\dif f

3.\newdimen\xstep \newdimen\ystep

4. \newdimen\step

5. \newif \if more

6. %
7.\def\point#l#2(% keep this percent sign!

8. \vbox toOpt<\kern-#2

9. \hbox toOpt€\kern#l. \hss)\vss)%

lo. \if vmode\nointerlineskip\f i)

Exercise 1: Look carefully at the way macro
\point generates boxes. What is the depth of those
boxes?

Close to horizontal 4 5 O

Quadrantal DDA

Close to horizontal 4 5 O

Octantal DDA

Figure 1. Details of Quadrantal a n d
Octantal Lines

Note that \nointerlineskips are inserted
between the dots when Q$ is in vertical mode.
This avoids the interline glue which otherwise is
automatically generated. As a result, macro \quadr
does not move the reference point and, after each
expansion, the user should decide whether to move
it, and by how much.

i.\def\quadr#l #2 I% keep this % sign!
2. \deltax=#l \deltay=#2

3.\xstep=Opt \ystep=Opt

4. \if dim\deltax<Opt

5. \ifdim\deltay<Opt \doloopC

6. \else \doloopB \fi

7. \else

8. \ifdim\deltay<Opt \doloopD

9. \else \doloopA \fi

lo. \f i) % end of macro quadr
11. \def \doloopA(%

12. \ifdim\deltax>\deltay \diff =-\delta

13. \else \dif f =\deltay \f i
14. \divide\diff by 2

TUGboat, Volume 10 (1989), No. 2 209

15. \loop

16. \if num\dif f >O

17. \advance\ystep by \step

18. \advance\dif f by-\delta

19. \else

20. \advance\xstep by \step

21. \advance\diff by \deltay

22. \f i

23. \pointC\xstepH\ystep3%

24. \moref alse

25.\ifdim\xstep<\deltax \moretrue\fi

zs.\ifdim\ystep<\deltay \moretrue\fi

27. \ifmore\repeat)

28. % end of loop for 1st quadrant
29. %
30. \def \doloopBC%

31. \if dim-\delta>\deltay \diff =\delta

32. \else \dif f =\deltay \f i
33. \divide\diff by 2

69. \if dim\deltax>-\deltay \dif f =-\delta
70. \else \dif f =-\deltay \f i
71. \divide\diff by 2

72. \loop

73. \ifnum\dif f >O
74. \advance\ystep by-\step

75. \advance\dif f by-\delta

76. \else

77. \advance\xstep by \step

78. \advance\diff by-\deltay

79. \f i

80. \pointC\xstep)C\ystep)%

81. \moref alse

82. \if dim\xstep<\deltax \moretrue\f i

83. \if dim\ystep>\deltay \moretrue\f i

84. \ifmore\repeat)

85. % end of loop for 4th quadrant

T h e Octantal DDA Method
34. \loop

35. \ifnum\diff >O Macro \octnt typesets a slanted line using octantal

36. \advance\ystep by \step DDA, a method very similar to quadrantal DDA.

37. \advance\diff by \delta The main difference is the way the dot is moved

38. \else between repeated typesettings. If the line is close

39. \advance\xstep by-\step to horizontal (its slope is between 0" and 45") the

40. \advance\dif f by \deltay dot is moved either to the right, or diagonally (up

41. \f i and to the right). If the line is close to vertical

42. \pointC\xstep)C\ystep3% (Ay > Ax or the slope is between 45" and 90°),

43. \moref alse the dot is moved either up or diagonally. If either

44.\ifdim\xstep>\deltax \moretrue\fi Ax or Ay is negative, the directions are changed

45.\ifdim\ystep<\deltay \moretrue\fi accordingly.
46. \if more\repeat) Fig. 1 shows the way lines appear in this

47. % end of loop for 2nd quadrant method. The line that is close to horizontal is made

48. % of several non-overlapping segments; the 45" line

49. \def \doloopCC% consists of dots laid diagonally. These lines are finer

50. \ifdim-\delta,-\deltay idiff =\delta than the quadrantal lines since they consist of fewer

51. \else \dif f =-\deltay \f i dots.

52. \divide\diff by 2 Because of the rules above, the algorithm

53. \loop should distinguish eight orientations of the lines,

54. \if num\dif f >O or eight ranges of the slope (hence the name

55. \advance\ystep by-\step octantal). The main macro, \octnt, does exactly
56. \advance\diff by \delta that. However, the range 0"-45" (octant 1) is
57. \else similar to the range 315"-360" (octant 8), so they

58. \advance\xstep by-\step are both handled by macro \loopA. Octants 2, 3

59. \advance\diff by-\deltay (45"-90°, 90"-135') are handled by macro \loopB,
so. \f i and so on. We thus end up with just four loop

61. \pointC\xstep)I\ystep3% macros, instead of eight. Dots are typeset by the

62. \moref alse same macro, \point, used for lines drawn by the

63.\ifdim\xstep>\deltax \moretrue\fi quadrantal method.

a.\ifdim\ystep>\deltay \moretrue\fi x := 0; y := 0; diff := -Ax/2;
65. \if more\repeat) repeat
66. % end of loop for 3rd quadrant plot(x, y);
67. % if diff > 0
68. \def \doloopD<% y : = y + l ; x : = x + l ;

TUGboat, Volume 10 (1989), No. 2

x:=O; y:=R; d:=3-2R;

while x<y &
plot8 (x,y) ;
if d>O m

d: =d+4 (x-y) +lo;

y: =y-1;

ehe
d:=d+4x+6;

x: =x+l;

endwhile
if X=Y ~JEQ plot8 (xry) ;

end;

Final F'rogram Loop over one octant

Figure 2. Bresenham's Algorithm for a Circle

d i f f := d i f f - Ax + Au; 15. \else \loopC \fi -- V" " ,

else
x := x + 1; diff := diff + Ay;

until x := Ax;

And we illustrate the method with the previous
example; a line with Ax = 6 and Ay = 2. This
time the algorithm iterates only 7 times, producing
a finer line.

diff
step x y before after

1 0 0 - 3 -3 + 2
2 1 0 -1 - 1 + 2
3 2 0 1 1 - 6 + 2
4 3 1 -3 -3 + 2
5 4 1 -1 - 1 + 2
6 5 1 1 - 1 - 6 + 2
7 6 2 - 3

l.\newdimen\Absx \newdimen\Absy

2.\newdimen\Xstep \newdimen\Ystep

3. %
4.\def\octnt#l #2 C% keep this percent sign
5. \deltax=#l \deltay=#2

6. \xstep=Opt \ystep=Opt

7. \if dim\deltax<Opt \Absx=-\deltax

8. \else \Absx=\deltax \fi

9. \if dim\deltay<Opt \Absy=-\deltay

lo. \else \Absy=\deltay \f i

11. \if dim\deltax<Opt

12. \if dim\deltay<Opt

13. \Xstep=-\step \Ystep=-\step

14. \if dim\Absx>\Absy \loopD

16. % octants 5 (loopD) & 6 (loopC)

17. \else

18. \Xstep=-\step \Ystep=\step

19. \ifdim\Absx>\Absy \loopD

20. \else \loopB \fi

21. % octants 4 (loopD) & 3 (loopB)

22. \fi

23. \else

24. \if dim\deltay<Opt

25. \Xstep=\step \Ystep=-\step

26. \ifdim\Absx>\Absy \loopA

27. \else \loopC \fi

28. % octants 8 (loopA) & 7 (loopC)

29. \else

30. \Xstep=\step \Ystep=\step

31. \if dim\Absx>\Absy \loopA

32. \else \loopB \fi

33. % octants I (loopA) & 2 (loopB)

34. \f i

35. \f i) % end of macro \octnt
36. %
37.\def\stepxC\advance\xstep by \Xstep

38. \advance\diff by \Absy)

39.\def\stepyC\advance\ystep by \Ystep

40. \advance\dif f by-\Absx)

41. %
42. \def \loopAC% loop for octants 1 & 8

43. \dif f =-\Absx \divide\dif f by 2

44. \loop

45. \if num\dif f >O

46. \stepx \stepy

47. \else \stepx

TUGboat, Volume 10 (1989), No. 2 211

48. \f i

49. \pointC\xstep)C\ystep>%

so. \moref alse

51. \if dim\xstep<\deltax \moretrue\f i

52. \ifmore\repeat)

53. % end of loop for octants 1 & 8

54. %
55. \def \loopBC% loop for octants 2 & 3

56. \dif f =\Absy \divide\dif f by 2

57.\ifdim\Absx=\Absy \diff=O \fi

58. \loop

59. \if num\dif f >O

60. \stepy

61. \else \stepx \stepy

62. \f i

63. \pointC\xstep)(\ystep)%

64. \moref alse

65. \if dim\ystep<\deltay \moretrue\f i

66. \ifmore\repeat)

67. % end of loop for octants 2 & 3

68. %
69. \def \loopCC% loop for octants 6 O 7

7o.\diff=\Absy \divide\diff by 2

71. \if dim\Absx=\Absy \dif f =O \f i

72. \loop

73. \if num\dif f >O

74. \stepy

75. \else \stepx \stepy

76. \f i

77. \pointC\xstep)I\ystep)%

78. \moref alse

79. \if dim\ystep>\deltay \moretrue\f i

80. \ifmore\repeat)

81. % end of loop for octants 6 & 7

82. %
83. \def \loopDC% loop for octants 4 & 5

84.\diff=-\Absx \divide\diff by 2

85. \loop

86. \if num\dif f >O

87. \stepx \stepy

88. \else \stepx

89. \f i

90. \pointC\xstepH\ystepH

91. \moref alse

92. \if dim\xstep>\deltax \moretrue\f i

93. \if more\repeat)

94. % end of loop for octants 4 & 5

Note that \loopA (octants 1 and 8) repeats
while the x-coordinate of the dot is < Ax. \loopD
(octants 4 and 5, where x and Ax are negative),
however, repeats while x > Ax. This works since in
those octants the line is closer to horizontal. \loopB

and \loopC, where lines are close to vertical, are
similar but compare y and Ay.

The Bresenham-Michener DDA Method
for Circles

Because of the high symmetry of a circle, it is a
particularly easy figure to draw (See [6] for a number
of circle drawing methods). The method used here
is efficient since it uses only integers and requires
only addition, subtraction, and a multiplication by
4. When this method is implemented as a computer
program, the multiplication by 4 is usually replaced
by a shift. rn, however, cannot shift numbers.
The method is described here in two stages. First
the basic idea (see algorithm in Fig. 2) is outlined;
next, the rn implementation is explained.

The basic idea is to draw a circle of radius R,
centered around the origin, by starting at the top
of the circle (point (0, R)) and moving, in small
steps, along one octant of the circle. Because of
the symmetry of a circle, each time a point (x, y)
is calculated on one octant, seven more points-
on the seven other octants-can be calculated,
which correspond to the original point. They are:

(-x, Y), (x, -91, (-9 -Y), (9, XI, (-9, XI, (Y, --XI,
and (-y, -x). The algorithm is a simple loop
that starts at point (x, y) = (0, R) and continues
while x < y (i.e., over one octant). Each time
through the loop, the current point (plus the seven
corresponding points) is typeset, and the algorithm
moves to the next point by incrementing the x
coordinate by \step and, from time to time, also
decrementing the y coordinate (by the same \step).
Variable \step has to be assigned a value before
\circle is expanded.

The only decision that has to be made in
each iteration is whether or not to decrement the
y coordinate. This decision involves the auxiliary
\dimen variable \d whose sign determines the action
taken. If \d is non-negative then y is decremented.
Each time through the loop \d is updated. The
details of updating \d can be found in references [4,
61 or can be obtained by writing to this author.

The rn implementation presented here builds
the circle centered on the reference point. The
reference point itself is not moved and, after each
expansion of the macro, the user may want to move
it explicitly, using appropriate skip commands.
Macro \circle is a simple \loop construct that
expands a plot macro to plot the current point
(actually, eight points), and then calculates the
coordinates of the next point. Like the macro
\point used to plot slanted lines, macro \plot
typesets a dot enclosed in boxes of zero dimensions

TUGboat, Volume 10 (1989), No. 2

(this is why the reference point is not affected),
and in vertical mode, inserts \nointerl ineskip
between boxes to eliminate unwanted interline glue.
Again note the percent signs '%' at the end of certain
source lines. They are important and have been
mentioned earlier.

Drawing Ellipses

The ellipse macros below accept, as parameters, the
semimajor and the semiminor ellipse axes, measured
in pt. The first macro generates a canonical ellipse
(centered on the reference point with a horizontal
major axis); the second one generates an ellipse
tilted clockwise 8 degrees.

Bresenham's method can be generalized to an
ellipse (Try to do it! This is exercise 2.), but this
does not give good results because of the symmetry
of the ellipse, which is not as high as that of a circle.
In the case of a circle, it is enough to calculate
one octant and copy it over to the other seven. In

(a coscp, b sin cp)

PL

Figure 3. Ellipses

the case of an ellipse, one quadrant, at least, has
to be calculated. Bresenham's method is based on
looping in equal steps of x, and this produces good
results in the first octant, since that octant has
a small slope and does not deviate much from a
horizontal line. Looping in equal steps of x over
a quadrant, however, produces dots that are too
widely spaced at the end of the quadrant (Fig. 3a),
where the ellipse has a large slope.

The method used here to draw an ellipse is
well known [7, 81 and is based on the parametric
representation of the ellipse:

x=acos4 ; y=bsinb. q5=0 ... 360" (1)

where a is the semimajor axis and b, the semiminor
one (Fig. 3b). The parameter 4 is varied (in small
steps of d4), over a quarter of the ellipse, from point
(a,O), (4 = 0), to point (O,b), (q5 = 90").

An important property of the algorithm is that
varying 4 in fixed steps of d4 moves the dot along
the ellipse in steps that cover variable perimeter
sizes. Initially, around point (a,O), the step size is
small, which is appropriate for that region, where
the ellipse has a large slope. As we move along
the quadrant toward the final point (O,b), the

TUGboat, Volume 10 (1989), No. 2

step size covers larger perimeter increments, again
appropriate for this region, where the slope gets
smaller.

To demonstrate this property, we derive the
differential of Eq. 1.

dx=-asin4d4; dy=bcos4d4.

For the initial steps, where 4 is close to zero,
dy x b d4 and dx is close to zero. Toward the end,
where 4 is close to 90°, ldxl x ad4 and dy = 0.
The perimeter increment is thus initially close to
bd4 and gets larger as it approaches ad$. Also,
the ratio between the initial and final perimeter
increments is approximately bla, which is the ratio
of the two axes of the ellipse. If a = b, the perimeter
increment is fixed, which is appropriate for a circle.

Our method uses the elementary trigonometric
identities:

sin(x + y) = sin x cos y + cos x sin y;

cos(x + y) = cos x cos y - sin x sin y.
(2)

Using Eq. 1, we start with 4 = 0 and get:

xo=acosO=a; yo=bsinO=O.
XI = acos(d4); yl = bsin(d4).
2 2 = a cos(2 d4); y2 = b sin(2 d4).

And, in general

x,=acos(idq5)=axAi; y i=bsin(id+)=bxBi .

The DDA nature of the algorithm stems from the
fact that we can eliminate the need for calculating
sin(i d4), cos(i d4) for every value of i. Using Eq. 2,
it is possible to express both Ai, Bi as functions

of A,-1, Bi-1 with the result that only sin(d+),
cos(d4) need be known.

Ai = cos(i d4) = cos((i - 2)d$ + 2d4)

using Eq. 2 yields

A, = cos((i - 2)d4) cos(2d4)

- sin((i - 2)d4) sin(2d4);

using Eq. 2 again

A, = cos((i - 2)d$)[cos2 (d4) - sin2(d$)]

- 2 sin((i - 2)d4) sin(d4) cos(d$);

adding and subtracting the same term

A, = cos((i - 2)d$) cos2(d4)

- sin((i - 2)d$) sin(d4) cos(d4)

- sin((i - 2)d4) cos(d4) sin(d4)

- cos((i - 2)d4) sin2 (d4)

= Ai-1 COS(~+) - Bi-1 sin(d$).

And, similarly,

Bi = Bi-1 C O S (~ ~) + Aj-1 sin(d4).

The initial values are A. = cos 0 = 1, Bo = sin 0 =

0. Our algorithm can now be expressed as:

A := 1; B := 0; C := cos(d4); S := sin(d4);
x := a; y := 0;
loop

plot (x, y) plus three symmetric points
T := A x C - B x S ;
B : = B x C + A x S ;
A := T;
x := axA; y := bxB;.

while z > 0;

This algorithm involves multiplications, and
is therefore considerably slower than Bresenham's,
but then a circle is just a special case of an
ellipse. Needless to say, the ellipse macro below
can be used to generate circles. The macro is a

rn implementation of the rules above, with two
exceptions:

1. In principle, the user should supply a value
for d4 and the macro should calculate sin(d4)
and cos(d4). However, since those calculations
involve fractions, they have to be done, in TEX,
with scaled numbers, which is time consuming.
As a result, three pairs of sin(d4) and cos(d4)
are built into the macro, corresponding to d+
values of 2~1120, 2~1240 and 2~1480. Those
values were selected experimentally, to produce
smooth ellipses on a 300 dpi output. On higher
resolution output devices, smaller values should
be tried, which may result in finer curves. The
first pair generates an ellipse by typesetting
120 dots (actually, generating 30 dots and
duplicating each 4 times), the second typesets
240 dots and the third, 480. The macro selects
one of those pairs, depending on the size of the
ellipse.

2. can easily operate on integers but our
problem involves real numbers. Such problems
are handled in QX in one of two ways. The first
is to use dimen variables, which can have non-
integer values; the second makes use of scaled
integers. Our macro uses the second choice
and scales all numbers by a \scalefactor of
10000.

The following registers and macro are common to
both ordinary and tilted ellipses. Once again, note
the similarity of \plotu to the earlier \point and
\plot macros.

i.\newcount\a \newcount\A
2.\newcount\b \newcount\B \newcount\T
3.\newcount\c \newcount\C

TUGboat, Volume 10 (1989), No. 2

4. \newcount\s \newcount\S \newcount\t

5.\newcount\x \newcount\y

6.\newcount\scalefactor \scalefactor=1OOOO

7. \newdimen\unit

s.\unit=lpt \divide\unit by \scalefactor

9. %
lo. \def \plotu#l#2{%

11. \vbox toOpt(\kernM\unit

12. \hbox toOpt{\kern#l\unit . \hss)\vss)%
13. \ifvmode\nointerlineskip\fi)

The macro for the ellipse.

i.\def\ellipse#l #2 {%
2. \A=l0000 \B=O

3. \ifnum#l>#2 \a=#l \b=#2

4. \else \a=#;! \b=#l \fi

5. % d\phi is determined according to the
6. % value of the semimajor axis 'a'.
7. \ifnum\a<l5

8. \S=523 \C=9986 % sin & cos of 360/120,
9. % correspond to 30 increments of d\phi
lo. \else

11. \ifnum\a<40 %over one quarter

12. \S=262 \C=9997 %For large ellipses,
13. % here are 60 increments
14. \else

15. \S=131 \C=9999 % and, for the largest
16. % ones, 120 increments
17. \f i \f i

18. %
19. \x=\a \multiply\x by \scalefactor \y=O

20. \loop

21. \plotfour

22. \T=\B \multiply\T by\S

23. \t=\A \multiply\t by\C \advance\t by-\T
24. \T=\A \multiply\T by\S

2s. \multiply\B by\C \advance\B by\T

26. \divide\B by \scalef actor

27.\A=\t \divide\A by \scalefactor

28. \x=\a \multiply\x by\A

2s. \y=\b \multiply\y by\B

30. \ifnum\x>O \repeat)

31. %
32. \def \plotf our(%

33. \pl0tui\x3I\y3\plotuC-\x3~\y)%
34. \plotu(\x3~-\y3\plotuI-\x3~-\y33

Next, we turn to a tilted ellipse, obtained
by rotating the canonical ellipse 8 degrees clock-
wise. Mathematically, rotating a 2D point (x, y) is
achieved by multiplying it by the rotation matrix

Thus the general ellipse point (a cos 4, b sin 4) is
transformed into

(acos$cos8-bsinbsin8, acos~s in0+bs in~cos8) .

and the expressions x := a x A, y := b x B, used
earlier for the coordinates of the next point now
become

x:= aAcos8- bBsin8 y := aAsin8fbBcosB.

The algorithm for the tilted ellipse differs from the
one

1.

2.

3.

for the canonical one in three more points:

Since a tilted ellipse is not symmetric with re-
spect to the coordinate axes, macro \Plotf our
cannot duplicate a point as easily as before. A
look at Fig. 3c shows that, for each point (x, y)
on one quadrant of the ellipse, point (-2, -y) is
on the diagonally opposite quadrant but points
(-x, y), (x, -y) are not on the ellipse. The
macro should therefore calculate one of these
points explicitly, using the expressions

u := aAcos8+ bBsin8;

w := aAsinB - bBcos8.

and plot points (u, w), (-21, -w).

The loop for the canonical ellipse is terminated
when x reaches zero. This again won't work for
the tilted ellipse, so the new macro \tellipse
uses a new count variable to loop 30, 60,
or 120 times, depending on the size of the
ellipse. In each iteration, the count variable is
decremented and compared to zero.

Because of the additional multiplications nec-
essary, numbers cannot be scaled as high as in " .
the previous macro. Trying to scale all num-
bers with a factor of 10000 causes arithmetic
overflow, so reduced scaling is used, resulting
in a less precise shape of the ellipse.

The algorithm thus is:

A := 1; B := 0; C := cos(d4); S := sin(d4);
% : = a cos8; u : = x ;
y := a sine; w := y;
count := 30, 60, or 120
loop

plot ($7 Y), (-2, -Y), ('1~9 w), (-'1~7 --w)
T : = A x C - B x S ;
B : = B x C + A x S ;
A := T;
LA:=a .A; L B : = b . B ;

(with a reduced scale factor)
x := LAcosO - LBsin8;
y := LAsin8 + LBcos8;
u := LAcos8 + LBsin8;
w := LAsinB - LBcos8;
count := c a n t - 1

TUGboat, Volume 10 (1989), No. 2 215

while count > 0;

and the macro is:

1. \newcount\dphi

z.\newcount\u \newcount\w

3. \newcount \ST \newcount\CT

4.\newcount\LA \newcount\LB

5. %
s.\def\tellipse#l #2 #3 #4 C%
7. \A=10000 \B=O

8. \d=#3pc \ST=\d

9. \divide\ST by 786 %since lpc=786432sp
lo. \d=#4pc \CT=\d \divide\CT by 786
11. \ifnum#l>#2 \a=#l \b=#2

12. \else \a=#2 \b=#l \fi

13.X d\phi is determined according to the

14. % value of the semimajor axis a.
15. \ifnum\a<l5

16. \S=523 \C=9986 \dphi=31

17. % sin, cos of 360/120, for 30
18. % increments of d\phi
19. \else \ifnum\a<40 % over one quarter.
20. \S=262 \C=9997 \dphi=61

21. % For large ellipses, here are 60
22. % increments
23. \else

24. \S=131 \C=9999 \dphi=l21

25. % For the largest ones, 120
26. % increments
27. \fi \fi

28. %
29. \x=\a \multiply\x by\CT

30. \multiply\x by 10 \u=\x

31. \y=\a \multiply\y by\ST

32. \multiply\y by 10 \w=\y

33. \loop
34. \Plotf our

35. \T=\B \multiply\T by\S

36. \t=\A \multiply\t by\C

37. \advance\t by-\T

38. \T=\A \multiply\T by\S

39. \multiply\B by\C

40. \advance\B by\T

41. \divide\B by \scalef actor

42. \A=\t \divide\A by \scalef actor
43. %
44. \LA=\A \multiply\LA by\a

45. \divide\LA by 100

46. \LB=\B \multiply\LB by\b
47. \divide\LB by 100

48. %
49. \x=\LA \multiply\x by\CT \u=\x

50. \T=\LB \multiply\T by\ST

51. \advance\x by-\T \divide\x by 10

52. \advance\u by \T \divide\u by 10

53. \y=\LA \multiply\y by\ST \w=\y

54. \T=\LB \multiply\T by\CT

55. \advance\y by \T \divide\y by 10

56. \advance\w by-\T \divide\w by 10

57. \advance\dphi by-I

58. \if num\dphi>O \repeat)

59. %
60. \def \Plotf our(%

61. \plotuC\x)(\y)\plotu<\u)C\w)%
62. \ p l ~ t ~ { - \ x) < - \ y) \ p l ~ t ~ (- \ ~) C - \ w))

This method is considerably slower than the
ones for lines and circles because of the multipli-
cations involved. It tur& out that, even though
not all the multiplications can be eliminated, the
method can be made a little more efficient. Refer-
ence [9] shows how to modify it to include only four
muliplications (and four additions) per iteration.
The algorithm is:

CT := cos8; S T := sine;
C D P := cos dq5; S D P := sin dq5;
A := C D P + S D P x S T x CT x (a/b - bla);
B := -SDP ((bx ST)' + (ax CT)') / (ax b);

C := S D P ((~xcT) ' + (axST)') / (ax b);
D := C D P + S D P x S T x C T x (b/a - alb);
D := D - (CX B) /A;

C := CIA;
x := axCT; y := a x S T ;
count := 30, 60, or 120;
loop

plot (x, v), (-2, -y), (u, w), (-u, -w)
x : = x x A + y x B ;
y : = x x C + y x D ;
count := count - 1

while count > 0;

The reader is encouraged to implement this in T@C

Appendix

The methods described here give reasonably good
output on a typical 300dpi printer. Sometimes,
however, high quality output is a must. Here is
an idea which produces better looking results. It
is, unfortunately, slow and is more liable to exceed
W ' s capacity.

All the examples above generate the lines and
curves by typesetting a period. The period has a
small size but is not small enough for high quality
results. Using a period from a smaller size font does
not help much. It turns out that the width of a
period in font cmrlO is 2.77779pt whereas in font
cmr5 it is 2.01392pt, almost the same size.

TUGboat, Volume 10 (1989), No. 2

To get dots of smaller sizes, we therefore
suggest typesetting a rule (specifically, a \vrule)
instead of a dot. The height and width of a rule can
easily be controlled and our experiments show that
a rule of dimensions 0. l p t , combined with a step
size of the same dimension, produces fine, smooth
lines on a 300dpi laser printer. The only change
necessary is to replace the dot with a \vrule in
macro \point as shown below.

\def \vrC\vrule height . l p t width. l p t 3
\def \point#l#2(% keep t h i s percent s ign!

\vbox toopt (\ ke rn42
\hbox to0pt~\kern#l\vr\hss)\vss3%

\ i f vmode\nointerlineskip\f i 3
\f i

3

Answers t o Exercises

1. Zero, since the depth of a dot is zero. This is easy
to verify by \setboxO=\hboxC .>, \showthe\dpO

2. Generalizing Bresenham's method for ellipses is
straightforward and produces:

x:=O; y : = a ;
D := (a/b)2; d := 2 0 + 1 - 2a;
while x < y d o

ploWx, Y);
i f d < O

d := d + D(4x +6);
else

d : = d + 4 D (x - y) + 6 D + 4 ;
y := y - 1;

x := x + 1;
end while;
if x = y t h e n plot8(x, y);
end;

References

Hendrickson, A., Some Diagonal Line Hacks,
TUGboat 6(2)83-86, (July 1985).
Cameron, A. G. W., Wiggly lines, TUGboat
6(3)155-156, (Nov. 1985).
Artwick, B., Computer Graphics, Prentice-Hall,
Englewood Cliffs, NJ.: 1985.
Bresenham, J. E., A Linear Algorithm for Incre-
mental Display of Circular Arcs, Cornm. ACM
20(2)100-106(Feb. 1977).
Knuth, D. E., The m b o o k , Addison-Wesley,
Reading, MA.: 1983.
Blinn, J. F., How Many Ways Can You Draw
a Circle?, IEEE Comp. Graphics & Applic.
7(8)39-44(Aug. 1987).
Hearn, D., & J. P. Baker, Computer Graphics,
Prentice-Hall, Englewood Cliffs, NJ.: 1986.

8. Rogers, D. F., & J. A. Adams, Mathemsti-
cal Elements for Computer Graphics, 2nd ed.,
McGraw-Hill, New York, NY.: 1989.

9. Smith, L. B., Drawing Ellipses with a Fixed
Number of Points, The Computer J., 14(1)81-
86, Feb. 1971.

Tests

Question: What is the difference between these two
identical twins?

Answer: The one on the left was done with
\s tep=lpt ; the one on the right, with \s tep=. 5pt

Compare the two diamonds. It is easy to tell which
parts are done with quadrantal and which, with
octantal DDA.

o David Salomon
California State University,

Northridge
Computer Science Department
School of Engineering and

Computer Science
18111 Nordhoff Street
Northridge, CA 91330
bccscdxs@csunb.csun.edu

Editor's note: The methods described in this ar-
ticle might be applicable to a graphics system of
the kind sought by David Rogers in his challenge of
TUGboat 10#1 (p. 39).

Editor's note: In these macros, the names used
by several p l a i n control sequences (\b, \B, \c, \d,
\S, \t, \u) have been reassigned with \newdimen.
Beware that these names will remain associated
with dimension registers even if \begingroup . . .
\endgroup is used in an attempt to localize their
effects.

