
1 2 TUGboat. Volume 11 (1990), No. 1

the supported languages. and so on. Through this

process it would be possible to end up with macro

definitions for \m@nthjan etc. which are tailored to

the set of languages supported by the . f m t file.

Clearly all this requires some rather compli-

cated macros to do the job. In addition these

macros would not be terribly fast but they would

be invoked only once for each set of macros with

language dependent text. Here I think portability

and flexibility are more important than efficiency!

The suffixes . eng for english or . grm for german

are supplied as an argument of \deflanguage.

Unfortunately these suffixes should be restricted to

three characters because some systems (DOS and

VMS) allow only that much. otherwise the full

names (e.g., engl i sh) would be preferable.

The precise form of the macro definitions

manufactured by \makelanguage should be of little

interest to author or user. They are somewhat

analogous to the PASCAL and TEX code produced by

 the-^^^ system programs TANGLE and WEAVE. These

macro definitions should, however, be optimized

whenever several languages use the same text. In

particular. if all languages use the same text (or

there is only one language defined) the replacement

text for the macro should be simply this text.

Sometimes a user wants a different text (for

one or several languages) than what is supplied by a

macro package with its files for language dependent

texts (abcdef . eng and abcdef . grm in the example

above). Without precise knowledge of the macro

definitions constructed by \makelanguage this

requires a macro \changelanguage which could be

used, e.g., in the form

\changelanguage

\somemacro{\somelanguage{ . . . I . . . }

to change the replacement texts of \somemacro for

the languages \somelanguage,

4. Protection

Some of the macro definitions discussed above,

in particular \ s e t language, certainly must be

protected against expansion if they are, e.g.,

written to an external file. Here I would, however,

propose a slight deviation from UlJjX's scheme.

\set language should be defined via

\def\d@protect#1#2{\noexpand#l}

\noprotect % normally, no pro tec t ion

Thus the sequence

{\doprot e c t

\immediate\write{\setlanguage))

would write the string ' \setlanguage1 (not

' \ set l@ng') which would still be protected when

read in and written again.

5. Summary

In the preceding I have discussed the design of a

scheme to handle multiple languages in 3. 1

have intentionally left out almost all details of how

such a scheme can be implemented. (At present

a preliminary version of all the required macros

is being tested.) For the moment it seems more

urgent to agree on a design (including the user

interface) than on details of how such a design can

be realized through macro definitions.

o Peter Breitenlohner

Max-Planck-Institut fur Physik

Munchen

Bitnet: PEBQDMOMPI 11

Software

with the definitions

Erratum:

The New Versions of T'EX and METAFONT

TUGboat Vol. 10, No. 3

Donald E. Knuth

Editor's note: The following should replace the

second full paragraph on page 326, column 1:

The special whatsit nodes are inserted

automatically in unrestricted horizontal mode (i.e.,

when you are creating a paragraph, but not when

you are specifying the contents of an hbox). You

can insert a special whatsit yourself in restricted

horizontal mode by saying \setlanguage(number).

This is needed only if you are doing something

tricky, like unboxing some contribution to a

paragraph.

