
Problems on the

~ / P o s t S c r i p t / G r a p h i c s Interface

Robert A. Adams
Dept. of Mathematics, The University of British Columbia, Vancouver B.C. Canada V6T 1Y4

Bitnet: useradmsQubcmtsg, Internet: useradms0mtsg.ubc.ca

Abstract

This paper discusses several problems which arose in the process
of using rn and PostScript together to produce two calculus
textbooks. Three of these problems were particularly important.
The first was getting a reasonable combination of Postscript
(scalable) text and math fonts that looked "good in 1270
dpi output from a Linotronic phototypesetter. The second
was devising a practical method for getting suitable (and well
aligned) two-colour separation for text and graphics. The third
involved incorporating labelling in PostScript graphics.
Solutions to these problems were largely dictated by the software
available at the time the solutions were needed, about one and
a half years ago.

Background copy for a typist and artist, than the author ac-

'QX was designed to produce beautiful books, es-
pecially ones which contain mathematical formulas.
It is therefore natural to choose 7QX to typeset a
calculus book, but calculus books require numerous
diagrams which themselves have mathematical for-
mulas for labels. It is fairly easy to produce even
very complex mathematical diagrams in Postscript,
either directly or indirectly using high-level soft-
ware which generates PostScript code. Therefore
it is also natural to produce a calculus book in a
Postscript environment.

During the past two years I have been involved
in many aspects of the production of two calculus
textbooks, Single-Variable Calculus, and Calculus:
A Complete Course, both published in Canada by
Addison-Wesley. Besides writing these books, I was
responsible for all the typesetting, and the construc-
tion of all the macros necessary to implement a book
design. Many (but not all) of the design elements
were specified by a professional book designer.

Anyone who has ever authored a textbook us-
ing any system will know what a monumental job
that can be. Knowing what information you want
to present, and how you want to present it, is only a
small part of the task. Getting a respectable type-
script copy in the days before personal computers,
word processers and computer graphics packages
usually meant more hours at a typewriter or draw-
ing board, or preparing and editing handwritten

tually spent composing the material. Such was
the state of affairs when I wrote the first edition
of Single-Variable Calculus for Addison-Wesley in
1981 - 1982. It was my second book done by the old
method, and I resolved at the time never to write
another book! Then in 1984 my Editor sent me
Addison-Wesley's newly published M i c r o w , and
a copy of The m b o o k , and my life was changed
forever. He wanted a review of M i c r o w . He
got a review, and another book, Calculus of Several
Variables (Addison- Wesley, 1987).

At that time we were still using Almost Modern
fonts, and this author, at least, had never even
heard of PostScript. The typesetting was successful .

enough, though Addison-Wesley (Canada) and I
were both feeling our way as far as design was
concerned. The problem of two colour separation
came up, but was not adequately solved. In the
end the production department got out the scissors
and glue, and the separation was done a posteriori
without the help of a computer. The diagrams
were all redone by a graphics professional on a
Macintosh from plotter copy I supplied, and they
left a lot to be desired. Moreover, there were several
serious colour alignment errors in the final book,
which arose from the fact that the alignment of
black and second-colour components for the figures
were performed by someone who did not fully
understand the devastating consequences of even
a minor misalignment in a complicated two-colour

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 403

Robert A. Adams

figure. I decided at that time that if I ever did
another book, I would try to have a system in which
I could produce most of the figures and integrate
them directly into the production files myself.

By the time Addison-Wesley had raised the
issue of a new edition of Single-Variable Calculus,
(mid 1988), I had become reasonably familiar with
Postscript and had acquired a 300dpi Postscript
printer for my PC system. I had also developed
a preliminary but useful version of a two- and
three-dimensional mathematical graphics program
MG which produced the kinds of figures I use in my
books. (I had used that software to generate rough
plotter copy for the several variable book.) There
were, however, some problems which still had to be
solved. Of these, the most important were

0 getting suitable fonts to use with l$X for
doing mathematical typesetting in a PostScript
environment.

0 devising a simple system for getting two-colour
separation in text and graphics.

a geting labels into my figures.
I will deal with each of these in turn.

The Font Problem

At the outset I should say that my setup two
years ago consisted of an AT clone with colour EGA
monitor, Addison-Wesley's M i c r o w , and (version
4.0 of) ArborText's PREVIEW and DVILASER/PS

driver programs. I had constructed a modified
version of p l a i n . t e x called psplain . t ex which
used a hybrid of Postscript Times fonts for text
mode material and Computer Modern math fonts
for math mode material, with a few other minor
modifications to clear up some problems which arise
from the fact that l$X manufactures some symbols
such as "#" using elements from text and math
families.

Copy at 300 dpi resolution obtained from
psplain looked fine to me, and to my editors.
However, a sample generated on a 1270 dpi Post-
Script phototypesetter exposed the first serious
problem. While the text mode material came out
at 1270 dots per inch, the math mode material was
still at 300 dots per inch, because DVILASER/PS

had downloaded raster patterns for the cmmi, cmex,
and cmsy fonts into the PostScript file. I suppose
we could have tried to obtain 1270 dpi versions of
those fonts, but I had no access to METAFONT.

About that time, I was given a copy of some
PostScript (scalable) versions of these fonts pro-
duced on a Macintosh using the FONTOGRAPHER

program, so we tried them. The combination again

looked good at 300 dpi, but at 1270 dpi a new
problem became apparent. The CM math fonts
have considerably less weight than the Times family
of text fonts. Here is a sample formula involving
characters from both families. It is magnified (to
20 points) to show the difference in weights.

max{a< xk} > cos ?l,

The combination would not do at all. At this point
I would have given a good deal for a working version
of John Hobby's MetaPos t program [Hobby, 19891,
or any other program that would produce Post-
Script outline fonts from METAFONT descriptions.
I had a preprint copy Leslie Carr's paper [Carr,
19881 on converting METAFONT logfile output into
a PostScript font description, but I was certain I
was not a good enough programmer to implement
it, at least not quickly.

A solution for this problem was finally found,
and it was definitely a hack. The FONTOGRAPHER

program generates the characters of a Postscript
outline font in a coded format which is preceeded
in its output file by a Postscript prolog with
definitions which enable the PostScript interpreter
to understand the code and construct the character
in the printer's memory. Being machine produced
PostScript, even these definitions are a bit hard to
read, but after some study I was able to conclude
that the character outlines were merely being filled

(with black) rather than stroked with a PostScript
pen. Lines 10 and 11 and 22 in this prolog began

/Strokewidth 0 def

I altered the definition of the F i l l and E o f i l l
operators being used so that in addition it s t roked
the outline with a pen of a prescribed thickness.
After some experimentation, I determined that the
thickness should be about 0.22 points for a nominal
10 point font. Thus, the Postscript prolog for the
outline fonts cmmi, cmsy, and cmex was modified to
become

/Fill{{gsave f i l l g res tore s troke3
Cf i1l)def

/Eofill((gsave e o f i l l g res tore
stroke3Cfill)def

/Strokewidth 22 def

404 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Problems on the m/PostScript/Graphics Interface

(The Strokewidth variable is measured in thou-
sandths of the nominal design size of the font.) Off
went another test to the phototypesetter, this time
successfully. Here is a sample of the output with
the same mathematical formula shown earlier.

I'm sure that experts in font design would find
any combination of two such different typefaces as
Times and Computer Modern aesthetically unsat-
isfactory, but the average mathematics student or
instructor, and maybe even the average editor, does
not. As so often happens in the real world, there
was a problem which needed an immediate solution.
While not ideal, an acceptable solution was found.

The Colour Separation Problem

Most textbooks these days use two or even four
or more colours to achieve greater visual impact.
Several queries about how to accomplish this with
rn have appeared in m h a x in the last few years
(one was from me), and I have never seen an
adequate response. Of course, in a sense S L ~
has solved the multi-colour problem by using blank
fonts (which have TFM files corresponding to those
of printing fonts but themselves print only blank
characters. It has, however, never been clear to
me how to obtain (or construct) such blank fonts.
There is also the TEX \phantom command, but I'm
not sure how that would react to a pagefull of text
to be blanked out. (I admit, I've never tried.)

Ideally, one would like to arrange the following
situation for two-colour separation. There should
be defined two control words, \black and \ red
say, so that you would insert one of these words in
the source code at points where you wanted
to switch from red to black or from black to red.
There should also be defined at the beginning of
the TEX source two Boolean controls, \p r in tb lack
and \p r in t red , which should be set to true or
false according to whether "black" output, "red"
output, or both combined is desired. There remains,
however, the problem of how to get the nonprinting
colour to leave blank areas on the page exactly
corresponding to the material that would appear if
it were printing.

I still do not know how to solve this problem

using TEX, but there are fairly easy PostScript
solutions. PostScript has a se tgray operator which
determines the gray-level of printing. Thus 0

se tg r ay causes printing in black; I se tgray causes
printing in white, i.e. no printing at all unless the
background is not white. Numbers between 0 and 1
result in different levels of gray. Define pr in tb l ack
and p r i n t r e d as PostScript Boolean variables which
you set to true or false according to whether you
want either or both colours to print. Then have

the 7JjX \black and \ red commands insert Post-
Script operators black and red respectively, into
the PostScript file via \ spec ia l commands to the
PostScript driver. The PostScript operator black

could be defined as 0 setgray if pr in tb lack is
true, and I se tgray if pr in tb lack is false. A
similar defintion is made for red.

The above solution works well for text (e.g.
headings, boxes and such items where black and red
are never overlaid), and it is clearly generalizable
to more colours. However, it poses problems for
graphic material. PostScript is designed so that
graphic elements plotted later always obscure ones
plotted earlier in regions of overlap. For example, in
a figure where a red curve (or pink shaded region)
crosses or overlaps an earlier plotted black curve (or
gray shaded region), the red element will blank out
those parts of the black element where it overlaps.
This is not what you want! In the final copy black
ink is quite opaque, red less so, and light shades of
pink or gray are not at all opaque and should not
blank out one another.

The solution to this problem was to redefine
the PostScript operators black and red so that,
depending on the values of pr in tb lack and p r i n t -
red, each translates the PostScript origin some
large distance in one direction or another. This
causes printing of the undesired colour to occur well
outside the boundaries of the physical page, and
thereby leaves the printed elements intact. The
Postscript driver DVILASER/PS can insert some
PostScript prolog code of its own at the beginning
of the PostScript output file it creates from a 7JjX

dv i file. In my installation, that prolog code begins

% SET THE FOLLOWING BOOLEAN SWITCHES t rue
% FOR WHICHEVER "COLOUR" OF OUTPUT IS
% DESIRED. SET BOTH TO t rue TO PRINT
% BOTH COLOURS SIMULTANEOUSLY. DO NOT
% SET BOTH SWITCHES f a l se AT THE SAME TIME
%
/printblack { t rue 3 def
/pr in t red { t rue) def

%
/ r red { pr in t red {O setgray) (1 setgray

i f e l s e) def
/bblack { printblack (0 setgray)

{1 setgray) i f e l s e) def

%
/black { bblack f i rs tswi tch

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Robert A. Adams

{/doingblack {true) def

printblack not {5000 5000 translate
/firstswitch {false) def) if 3
{ doingblack not {5000 5000 translate
/doingblack {true) def) if 1
ifelse) def

%
/red { rred firstswitch
{/doingblack {false) def

printred not {-5000 -5000 translate

/firstswitch {false) def) if)

{ doingblack (-5000 -5000 translate
/doingblack (false) def) if)

ifelse) def

%
/setoldgray { currentgray dup

/oldgray exch def) def

%
/restoregray oldgray setgray) def

%
/fixblack { setoldgray pop 0 setgray) def

%
/maxgray { dup hewgray exch def
setoldgray ge {newgray) {oldgray)

ifelse setgray) def

These definitions are a little complicated, probably
more so than absolutely necessary to achieve the
desired effect. The definitions of setoldgray,
f ixblack, and restoregray are made to facilitate
the printing of crop marks, registration crosshairs,
and manuscript header information outside the
margins of what will be the final trimmed page,
on all printed pages regardless of the settings of
pr in tb lack and pr in t red . The operator maxgray
is useful when colour separating shaded figures.

These PostScript definitions are accessed in the
TEX source code by means of the following control
words defined at the beginning of the macro file
containing all the macros for the book.

% SVC-PS.TEX

%
% Format for Calculus Book

% (Postscript Version)

% R. Adams revised 15 Dec 89

%
% first some defs to set up
% Postscript for two colo&s
\def\red(\special{ps:: rred))

\def\black(\special{ps:: bblack 1)
\def\fixblack{\special(ps::
bblack fixblack))

\def \restoregray(\special{ps: :

restoregray))

\def\logo{\hbox tol7pt(\special(ps::
rred logo bblack)\hfil))

\def\regmark(\hbox to60pt(\special{ps::

regmark)\hfil))

Here logo and regmark are PostScript procedures
which produce a logo character for use in section
headings in the book, and the registration crosshairs

mentioned above. To illustrate the use of \red and
\black in the 'I$$ source, here is the definition of
the macro \examp used to introduce examples in
the book.

\long\outer\def\examp #l\par{\penalty-200

\vskip 12pt plus 2pt minus2pt
\global\advance\itemno by1

\noindent \llap{{\exampf ont \red EXAMPLE
\itemlabel\hskiplpc\black))#1)

The word "EXAMPLE" and its label number are
printed in red in the left margin. The \make-

headline macro illustrates the k e of \f ixblack
to ensure that the crop marks \ulc and \urc, and
headline material outside the crop boundaries print
regardless of which colour is printing. Exceptions
are the words "black" which is printed only if black
is printing, and "colour" which prints only if colour
is printing.

\def\makeheadline(\vbox to Opt{%

\vskip-82pt\hbox to\pagewidthI%

\fixblack\kern-196pt\copy\ulc
\qquad\raise12pt\hbox(%
\figfont ADAMS:

Single-Variable Calculus

chapter \number\chapno\ -- page
\number\pageno\quad

\red colour \black black
\fixblack\quad\today) \quad

\raise12pt\regmark

\hfi l l \ r lap{\kern42pt\copy\urd
\restoregray)

\vskip26pt

\hbox to\pagewidthI\the\headline)\vss)
\nointerlineskip)

This system for colour separation works well.
In PostScript code for figures, one inserts the
Post Script operators red and black where colour
changes are desired.

Labels on PostScript Graphics

In a calculus textbook mathematical graphics, both
two and three dimensional, are a very important tool
for presenting information and making it intelligible
to the student. Most such graphics require labels
involving mathematical formulas, sometimes almost
as complicated horn a typesetting point of view
as the formulas appearing in the text. It is
therefore very helpful to be able to use TEX to label
figures. Most commercial software programs which
produce mathematical graphics do not support this
capability yet. On the other hand, programs
designed specifically for doing graphics within a
TEX environment are not of sufficient sophistication
to produce the quality of mathematical graphics
which can be generated by writing PostScript code.

406 TUGboat, Volume 11 (1990), No. 3- Proceedings of the 1990 Annual Meeting

Problems on the m/PostScript/Graphics Interface

I wanted the best of both worlds, and it seemed
necessary in this instance to do some actual pro-
gramming to produce a mathematical graphics pack-
age which would produce both PostScript output
for the graphic and, simultaneously, T$jX labelling
information. Over several previous years I had
developed, using Turbo Pascal, a graphics program,
MG, which produced a variety of two-dimensional
plots of functions and equations as well as lines, vec-
tor fields, freehand spline curves and such, and was
also able to produce three-dimensional diagrams
of curves and surfaces ruled by families of curves.
The program produced HPGL output, because I
happened to have a Hewlett Packard plotter at the
time. Such output was not of suitable quality for
publication.

About two years ago my colleague, Dr. Robert
Israel (Mathematics Department, The University of
British Columbia) took over the M G project and
redesigned the user interface, making the program
much easier to use, and at the same time much more
functional. Meanwhile, I altered the file output of
the program to produce, instead of a single HPGL
file, two files for each figure created, one a Post-
Script description of the graphic, and the other a
text file containing labelling information in m-
readable form. All that was then needed was a m
\f i g i n s e r t macro to pass on the PostScript file in
a \ spec ia l , and read the label file, typesetting the
labels at the correct positions.

Specifically, the command

\f iginsert(myfig)

carries out the following operations:
First it opens the label file myf i g . lbl and reads
the first two lines, which contain integers giving
the width and height of the graphic in points.
It builds a vbox with those dimensions and
vfills it so that the PostScript currentpoint
(from the PostScript driver's point of view) is
at the bottom left corner of that box.
Next it passes the file myfig.ps to the driver
with a \special . The PostScript code in
myf ig .p s (which is bracketed by a PostScript
gsave - gres tore pair) translates the Post-
Script origin to the current point and draws
the figure.
Finally the macro processes the remaining lines
of the label file in groups of five. These are x
and y coordinates of the position of the label in
the vbox, two codes representing the horizontal
and vertical justification or centering of the
label, and finally the 'I]EX label itself.

0 Reading of the label file terminates when a
negative x coordinate is read. (MG inserts -1

as the last line of the file.)
Here is a list of the \f i g inse r t macro.

\newcount\pswidth
\newcount\psheight
\newcount\justx \newcount\ justy
\global\justx=O \global\justy=O
\newcount\vpos \newtoks\label
\newread\labelfile
\newcount\xcoord \newcount\ycoord
\newif\ifdoit \newbox\labox

%
\def\newfiginsert#l{\openin\labelfile=#l.LBL
\global\read\labelfile to\pswidth
\global\read\labelfile to\psheight
\vbox to\psheight pt{\vfill

\special{ps: : /f irstswitch {true} def)
\special{ps: plotfile #i.PS)
\special{&i : :- printblack not

C5000 5000 translate} if 3
\vskip-\psheight pt\ninepoint%
\hbox to\pswidth pt{\hss}%
\parindent=Opt\offinterlineskip
\vpos=o

% read in label information
\loop

\global\read\labelfile to\xcoord
% test for end of labelfile

\ifnum \xcoord < 0 \doitfalse
\else\doittrue\fi

\ifdoit \global\read\labelfile to\ycoord
\global\read\labelfile to\justx
\global\read\labelfile to\justy
\global\read\labelfile to\label
\global\setbox\labox=\hbox{\label~

% insert he label, suitably justified
\advance\vpos by-\ycoord
\vskip-\vpos pt \vpos=\ycoord%
\hbox to\pswidth pt{\hskip\xcoord pt%
\hbox to OptC\ifnum\justx>O\hss\fi%
\vbox toopt{%
\ifnum\justy<2\vss\fi%
\nointerlineskip\vbox

to\dp\labox{\vfil)
\nointerlineskip\copy\labox%
\nointerlineskip\vbox

to\ht\labox{\vfil)
\nointerlineskip%
\ifnum\justy>O\vss\fi)%

\ifnum\justx<2\hss\fi)%

\hssl
\repeat
\special(ps: : printblack not

{-5000 -5000 translate} if 3
\advance\vpos by-\psheight%
\vskip-\vpos pt}

\closein\labelfile}

The \ f i g i n s e r t macro is a low-level one. In
practice, figures are inserted by more high-level
macros which call \f i g inse r t to place one or more

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Robert A. Adams

figures across a line or in a box, and which may also
supply titles or headings for the figures.

The system is not perfect. MG takes no account
of the actual size of a label, vertically or horizontally.
(It does not attempt, for instance, to read any TFM
files.) Therefore, each figure needs to be printed
once after it is created to check on the positions
of labels. Occasionally a label needs to be moved
in one direction or another to avoid colliding with
other elements in the figure. Such moving of labels
is most easily accomplished by directly editing the
label file to alter the coordinates of the label. All
one needs is a pica ruler such as the handy plastic
ones given out at rn Users Group meetings to
advertise P C W . Here is an example of a figure
created by MG for Calculus: A Complete Course,

and here is its label file.
217

173
204
149
0
0

$\ss x$
214
66
0
2

$\ss y$
108
7

Here \ss is an abbreviation for \scriptstyle.

One final comment about producing PostScript
graphics for inclusion with rn. There are nu-
merous programs on the market which can be used
to produce Postscript graphics output on an IBM
PC, a Macintosh, or on other personal computers.
(See J . T. Renfrow's paper [Renfrow, 19891 for
methods of integrating such graphics into a TEX
document.) More and more of these programs are
capable of generating what is called Encapsulated
PostScript. This means that the PostScript code
which defines the graphic is bracketed by interfacing
code in a standard format which appears as ignor-
able comments to the PostScript interpreter, but
which conveys necessary information (for example
the size of the graphic) to external programs which
must assimilate the graphic as part of a larger
document. It is encouraging to see implementers
of DVI-Postscript drivers such as ArborText are
now taking note of this standard and providing for
easy inclusion of Encapsulated PostScript in
documents via \special commands.

Bibliography

Carr, Leslie. "Of METAFONT and PostScript."
W n i q u e s 5, pages 141 - 152, 1988.

Hobby, John D. "A METAFONTlike System with
PostScript Output." TUGboat 10(4), pages 505 -
512, 1989.

Renfrow, J. T. "Methodologies for Preparing and In-
tegrating Postscript Graphics." TUGboat 10(4),
pages 607- 626, 1989.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

