
1990 Annual Meeting Proceedings
Users Group

Eleventh Annual Meeting
Texas A&M University, June 18-20, 1990

COMMUNICATIONS OF THE USERS GROUP
TUGBOAT EDITOR BARBARA BEETON
PROCEEDINGS EDITOR LINCOLN DURST

VOLUME 11, NUMBER 3 SEPTEMBER 1990
PROVIDENCE RHODE ISLAND U.S.A.

Production Notes Other Conference Proceedings

The rn source code for each article in this issue
of TUGboat was transmitted via network or floppy
diskette to the editors, who then used P C W
running on a Zenith H-386 and an IBM PC-com-
patible 386 to generate dv i files. These files were
then shipped to the American Mathematical Society
via modem, and final copy was produced on the
Society's APS p-5.

A few items were produced locally by authors
and then mailed to the editors for incorporation in
articles. Personnel at the Math Society cut these
figures and pictures into place. The output devices
used for these items were:

rn HP LaserJet:
- Vulis, VT&X enhancements to the QjX

language, appendix only.
rn Apple Laserwriter 11:
- Beck and Siegel, PansFig: Portable graphics

for QZ, figures only.
rn Linotype L200P Postscript (1270dpi):
- Adams, Problems on the QjX/PostScript/

graphics interface, pictures only.

rn Shaken SAPLS-Laura laser
phototypesetter (1626dpi):

- Hamano, Vertical typesetting with T&X, page
from Descartes' Dream only.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
APS 1.15 is a trademark of Autologic, Inc.
DOS and MS/DOS are trademarks of Microsoft

Corporation
LaserJet, PCL, and DeskJet are trademarks of

Hewlett-Packard. Inc.
METFlFONT is a trademark of Addison-Wesley Inc.
PC rn is a registered trademark of Personal 7&X,

Inc.
Postscript is a trademark of Adobe Systems, Inc.
T'X and A M W are trademarks of the American

Mathematical Society.

Europe

Proceedings of the First European Conference on
QjX for Scientific Documentation. Dario
Lucarella, ed. Reading, Mass.: Addison-
Wesley, 1985. [16-17 May 1985, Como, Italy.]

Proceedings of the Second European Conference on
!QX for Scientific Documentation. Jacques
Dhsarmhnien, ed. Berlin: Springer-Verlag,
1986. [19-21 June 1986, Strasbourg, France.]

Q Z 8 8 Conference Proceedings. Malcolm Clark,
ed. Chichester, England: Ellis Horwood, 1990.
[18-20 July 1988, Exeter University, Exeter,
England.]

North America

Conference Proceedings: QjX Users Group Eighth
Annual Meeting. Dean Guenther, ed.
!QXniques No. 5. Providence, Rhode Island:
rn Users Group, 1988. [24-26 August 1987,
University of Washington, Seattle,
Washington.]

Conference Proceedings: T&X Users Group Ninth
Annual Meeting. Christina Thiele, ed.
T&Xniques No. 7. Providence, Rhode Island:

Users Group, 1988. [22-24 August 1988,
McGill University, Montrkal, Canada.]

Conference Proceedings: QjX Users Group Tenth
Annual Meeting. Christina Thiele, ed.
TUGboat 10, no. 4. Providence, Rhode
Island: W Users Group, 1989. [20-23
August 1989, Stanford University, Stanford,
California.]

UNIX is a trademark of AT&T Bell Laboratories.

TUGboat, Volume 11 (1990), No. 3 335

President's Introduction

Nelson H. F. Beebe

The 1990 TUG meeting held at Texas A&M University in College Station, Texas,
was our eleventh, and these Proceedings are the second to be published as a regular
issue of TUGboat. Texas A&M is a big institution, with over 2200 faculty and
41000 students, 7000 of whom are graduate students. It is one of the few land.
sea, and space grant universities, and also has the largest campus of any American
university.

About 150 TUG members showed up, and almost all lived at the same hotel,
so there were discussions going on from about 6:30 in the morning until well past
midnight each day. I certainly enjoyed myself, and I would like to thank all of those
who attended for contributing.

. The first morning was devoted to status reports about the new TEX 3.0 and
METAFONT 2.0, the exciting work on the new I P m 2.10 implementation, reports
from a number of international representatives, site coordinator reports, the first
draft of a level 0 DVI driver standard, and archives and bulletin boards. In the
afternoon. we were treated to Frank Mittelbach's insightful comments about the
weaknesses of m, with ideas for future extensions.

I would like readers who have stretched m ' s limits to think seriously about
writing up their experiences for TUGboat publication. While we do want to keep
TQX stable for some time, we risk killing it if we do not simultaneously plan for its
peaceful evolution. because competing commercial desktop publishing systems are
also evolving.

Frank's talk was followed by two presentations about the use of TFJ in Japan.
The AutoLayouter system by Y. Miyabe and colleagues is a good example of an evo-
lutionary direction that m implementations might follow, combining workstation-
based document preparation with a set of tools for structured document editing and
management.

The second morning began with vendor presentations, and it was good to hear
that several already have implemented TEX 3.0. David Kellerman of Northlake
Software showed some interesting slides illustrating the relative amounts of work
that go into producing a solid commercial product-more than two-thirds is 'value-
added', which clearly demonstrates that commercial, as well as public-domain. im-
plementations of rn are needed if it is to survive. The remainder of the day was
devoted to discussions of macro writing (see particularly Amy Hendrickson's valu-
able ideas, and Andrew Marc Greene's expression parser). portable graphics, and
the real world of book production.

The third day began with talks about using other tools to support doc-
ument preparation, the teaching of 7&X, and the annual rn help session hosted
by Barbara Beeton. The problems and answers from this are finally going to make
it into TUGboat, and I hope that this topic can be a regular column. The meet-
ing wrapped up with the afternoon session on fonts. Michael Vulis has done some
very interesting things with extensions to m , which I believe we should study as
a pilot implementation of some ideas for m ' s evolution. The extensions can be
suppressed by a command-line option to get a standard TEX which passes the trip
test. Alan Hoenig's METAFONT implementation of the Diirer alphabet will, I trust,
encourage others to consider similar projects with classic fonts.

Of course, a TUG meeting would not be complete without numerous social
activities. We are very grateful to ArborText, Blue Sky Research, Computer Com-
position Corporation, Kinch Computer Co., Micro Programs. Northlake Software,

TUGboat, Volume 11 (1990), No. 3

Personal TEX, rnno logy Inc., the Bryan/College Station Convention Center &
Visitors Bureau, and the College Station Hilton for their contributions to making
the Eleventh Annual Meeting a big success.

Our sincere thanks go out to all those who worked so hard to deliver such an
excellent meeting, in particular, the program committee, staff members of the Texas
A&M Computer Science Department, and the TUG staff-all of whom dedicated
a considerable amount of time and effort over the past 12 months.

And lastly, our sincere appreciation to Lincoln Durst, whose diligent efforts
have resulted not only in the production of a Proceedings of the highest quality, but
in its timely appearance-within 10 weeks of the meeting.

Hope to see you in September at m 9 0 in Cork!

o Nelson H.F. Beebe
Center for Scientific Computing and

Department of Mathematics
South Physics Building
University of Utah
Salt Lake City, U T 84112
USA
Tel: (801) 581-5254
Internet: Beebeascience .utah. edu

1990 Program Committee: The Program for the 1990 Annual Meeting of the
TEX Users Group was organised by the following people, whose efforts to make the
11th Annual Meeting a memorable start to the new decade should not go unnoticed:
Lincoln Durst, our new editor; Regina Girouard of the American Mathematical
Society; Tom Reid, the on-site contact person (Texas A&M University, College
Station); and Christina Thiele, Program Coordinator (Carleton University. Ottawa,
Canada).

E - m : Guidelines for Future TEX Extensions

Frank Mittelbach
Electronic Data Systems (Deutschland) GmbH
Eisenstrafie 56 (N 15), D-6090 Riisselsheim, Federal Republic of Germany
Tel. f49 6142 803267
Bitnet: pzf 5hzQdrueds2

Abstract

With the announcement of IIjEX 3.0, Don Knuth acknowledged the
need of the (ever growing) w community for an even better sys-
tem. But at the same time, he made it clear, that he will not
get involved in any further enhancements that would change The
W b o o k .

TEX started out originally as a system designed to typeset its
author's own publications. In the meantime it serves hundreds of
thousands of users. Now it is time, after ten years' experience,
to step back and consider whether or not rn 3.0 is an adequate
answer to the typesetting requirements of the nineties.

Output produced by w has higher standards than output
generated automatically by most other typesetting systems. There-
fore, in this paper we will focus on the quality standards set by
typographers for hand-typeset documents and ask to what extent
they are achieved by rn. Limitations of m ' s algorithms are ana-
lyzed; and missing features as well as new concepts are outlined.

1 Introduction So m is finally frozen, and any further de-
Last year at Stanford we celebrated the tenth birth- velopment will result in a different system no longer
day of the T@i project. Up to now, rn has served maintained by Knuth. The main purpose, therefore,
thousands of users well and we expect it will con- of this paper is to give an overview of high quality
tinue to do so in the future. The longevity of typesetting requirements (covered and not covered
rn lies in by TEX 3.0) thereby, we hope. channeling future de-

the quality of its output
its universal availability
and its stability.

In the last few years, more and more users
brought TEX from the universities into industry
where it was challenged by new applications [33].
But time does not stand still, and what was at the
top of its profession yesterday might prove to be ob-
solete tomorrow. TEX is still state of the art for
the tasks it was designed to accomplish, but, with
the growing understanding from several years' us-
age, we can now see where it will fail in high quality
typesetting.

As a result of user pressure [27], Don Knuth an-
nounced a new version of TEX at Stanford, acknowl-
edging the fact, that he did not foresee the need for
8-bit input [19]. At the same time, he made it clear,
that he had decided to retire from this project and
return to his long delayed topic "The Art of Com-
puter Programming" .

velopments so that we do not end up with several
incompatible " m - b a s e d systems", but rather with
one system that will provide the same characteris-
tics (i.e., quality, portability, and availability) as the
current program.

was designed as a low-level formatter, a
stable kernel, of a typesetting system where exten-
sions at both ends would be possible to take into
account developments in printing technology (back
end) and in user interfaces (front end) [14]. Thus,
complaints about user unfriendliness of Q$ are un-
called for, since such requirements can be handled
by front ends either written in the w language
itself like and, therefore, fully portable, or
in an external language like ArborText's Publisher,
or VAX Document, etc. These systems use m or
a m - b a s e d system as the ultimate formatter but
provide a user-friendly interface 1321.

When we discuss missing features, we must dis-
tinguish carefully between things which can and
should be handled by a front end system and things

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 337

Frank Mittelbach

that are truly tasks for a formatter and cannot be
handled in Tm 3.0. In the following sections we
analyze features required for high quality typeset-
ting, discussing whether they can be handled by
primitives or by a suitable front end. or both. If
they cannot be handled, we attempt to find ways to
achieve the desired results. Finally, in section 12, we
switch our attention to the concepts of the lan-
guage itself, outlining some ideas on how a language
for a new system could describe the underlying con-
cepts more clearly.

2 Line breaking

w ' s line breaking algorithm is clearly a central
part of the system. Instead of breaking a para-
graph line by line, the algorithm regards paragraphs
as a unit and searches for an 'optimal solution'
based on the current values of several parameters.
Consequently. a comparison of results produced by

and other systems will normally favour m ' s
met hods.

Such an approach, however. has its drawbacks,
especially in situations requiring more than block
style text of a fixed width. The final line breaks are
determined at a time when information about the
content of the current line has been lost (at least for
the eyes of ?)EX, i.e., its own macro language). so
that provides no sort of post-processing of the
final lines based on their content.

Furthermore, there is no way to influence the
paragraph shape with regard to the current position
on the page, since this information is not known
a priorz. See section 4 for further discussion of
this topic.

The use of only four categories (tight, de-
cent. loose, very loose) to distinguish different glue-
settings in adjacent lines seems somewhat inade-
quate. The number of categories should be in-
creased. In addition. a more global approach
(even beyond paragraph borders in certain circum-
stances), taking the overall variation of glue-setting
into account might produce better results.

2.1 Line breaking parameters

While the algorithm provides a variety of param-
eters to influence layout, some important ones for
quality typesetting are missing. There is no way
to deal with vertical stripes produced by interword
gaps falling into the same vertical position. A sim-
ilar problem involves identical words one above the
other, especially at the beginning of a new line. Both
problems are distracting to the eyes of the reader
and will destroy any effort to produce a beautifully
broken paragraph. A good example is shown at
the beginning of the third paragraph of section 4

where ". . . breaking algorithm . . ." is repeated on
two lines.

Another aspect of fine print is the assurance
that the last line of a paragraph will not be too
short. This is especially important in layouts which
use paragraph indentation, where an undesired gap
would be produced if the last line of one para-
graph is shorter than the indentation of the next
paragraph. Unknown to most w users, this
can be prevented by a special setting of w ' s
line breaking parameters as shown in example I
in section 14. While other parts of this paper use
this setting, this paragraph shows the undesired ef-
fect.

Hyphenation of consecutive lines is han-
dled for up to two lines (\doublehyphendemerits),
but there is no possibility of avoiding para-
graphs like the current one and the next one, in cer-
tain circumstances. As one can easily ob-
serve. the number of hyphens in these para-
graphs is artificially forced by setting some of
7373's line breaking parameters to unusual val-
ues. But in non-English languages (with longer word
lengths on the average). such situations present real-
life problems.

Another problem is the discrepancy be-
tween the first and later lines of a paragraph, pro-
duced by the implementation of the paragraph in-
dentation. This is especially crucial in lay-
outs with zero indentation, because space at the be-
ginning of the first line (for example, from \math-
surround) will not vanish into the margin be-
cause of the implicit \hbox representing the in-
dentation (even if not visibly present), while
such space will be removed at the begin-
ning of later lines. This will result in strange start-
ing gaps.

3 Spacing

When block text is to be produced, it is necessary
to change the interword or the intercharacter spac-
ing, or both. Since variable intercharacter spacing is
frowned upon by the experts (except in rare circum-
stances), a line breaking algorithm has to stretch or
shrink the interword space starting from an opti-
mal value given by the font designer until the final
word positions are determined. Again. has a
well designed algorithm to take such stretchability
into account. Additionally, each character has a so
called \spacefactor assigned to it which will in-
fluence a following space, so that it is possible to
enlarge or reduce the interword space after certain
characters. As an example, compare the spacing af-
ter punctuation characters in this paragraph with
other paragraphs.

338 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

E - m : Guidelines for Future 7QX Extensions

2 6 7 5 3 4 1

as Aus kam in der letzten Runde,wo

Figure 1: Interword spacing

The interword spaces are numbered in a way so that
higher numbers denote spaces which should shrink
less using the rules given by Siemoneit 1281. The last
line shows the resulting overfull box which would be
produced by standard in this situation.

There is no provision, however, for influencing
the interword gaps in relation to the current charac-
ters on both word boundaries. If it is necessary to
shrink a given line, not all gaps should shrink by the
same amount. Instead, it is best to shrink more af-
ter a comma, for example, than between 'then it' be-
cause of the different shape of the characters. There
is no way to achieve such fine tuning in ex-
cept by manually adding \hskip in lines, which is
intolerable. An example of this approach is shown
in figure 1. Such a mechanism is clearly font de-
pendent, and an implementation would, therefore.
change both and METAFONT, since the best
place to store this information is in the TFM file. But
even tables similar to \sf code (fixed by the format
or a macro) would be a big improvement, since most
fonts in use tend to have similar shapes.

In M ' s concept for glue-setting an important
distinction is made between stretchable and shrink-
able glue: while the latter is only allowed to shrink
to a fixed minimum (i.e., the natural width minus
the shrink component), any given amount of stretch-
able glue is automatically allowed to stretch arbi-
trarily far.l The reason for this behavior is that it
allows the line breaking algorithm to achieve 'emer-
gency results' if no suitable line breaks are other-
wise found. But this is undesirable in most cir-
cumstances, so that either the stretching should be
bounded similarly to shrinking in all cases (resulting
in some changes to the line and page breaking algo-
rithms), or another class of glue should be added, for
which the amount of stretching can be determined
individually.

Don Knuth [la, pp. 394-3951 gives an exam-
ple of how to achieve hanging punctuation (together
with special fonts, as he noted). Since this, too, is
a sign of good quality typesetting, it is questionable
whether such a scheme (that will make the ligature
mechanism partly unusable, along with other side ef-

fects) is advisable or whether this should be a direct
feature of a future program.2

4 Page breaking

A major problem with w is its page breaking algo-
rithm. Page breaking is handled asynchronously by
moving things at certain times from the list of recent
contributions onto the "current page" until this list
is filled with more items than will fit on the page in
final form. The final page break is chosen by weigh-
ing badness (how full the page is if we break here)
and penalties (how expensive it is to break here).
Such penalties will be placed after some of the lines
either by the line break algorithm or during macro
expansion.

But good page layout usually requires taking
pairs of facing pages into account as they will be seen
by the reader. This is in itself not a real restriction,
because one can view a double page as a huge case of
two-column format, provided, of course, that both
pages can be held simultaneously in memory. But,
unfortunately, none of T@'s internal mechanisms
can handle multi-column layout properly, so that
such an approach has to avoid all internal features
for page breaking like \ inser t , etc. Good examples
that also show the limitations of QjX in this regard
are the output routine of I4W [22] and implemen-
tations of multi-column layout [4, 241, all bordering
on the impossible.

But, even more important, the line breaking al-
gorithm in conjunction with the page breaking al-
gorithm pose unsolvable problems. When the final
page break is chosen by w. all paragraphs which
were once candidates for the current page are al-
ready divided up by the line breaking alogrithm, and
this division cannot be undone for text carried over
to the next page, since some of the necessary infor-
mation (space at the line breaks, for example) is
lost. This makes it impossible to change the page
layout at a fixed place, e.g., at the top of a new
page, to leave room for a small figure surrounded
by text. Only in very restricted circumstances can a
solution can be found inside W [9], but documents
of moderate complexity cannot be handled this way.
A general solution to this problem can be included
in the current in an upward compatible manner.
A prototype was designed at the University of Mainz
shortly after the conference at Stanford 1251.

1 Under normal circumstances, however, this is prevented
by the badness function.

2 Starting with the next section, this article uses hanging
punctuation. The change in quality is clearly visible although
improvement is still possible by making subtle adjustments to
all characters (e.g., move the 'r' a tiny bit out, etc.) to reach
a perfect alignment.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 339

Frank Mittelbach

It is an open question whether we should follow
m ' s page breaking algorithm at all, since it was
stopped short because of the space and time con-
straints of the computers available at the time of its
development. In his PhD thesis [26], M. Plass con-
sidered several global optimization strategies, using
a two pass system. His results open a wide field for
future research work. Some of his ideas seem to be
used in the Type & Set system [3].

The main contribution of w 8 2 to computer
based typesetting was the step taken from a line-by-
line paragraph breaking algorithm to a global opti-
mizing algorithm.3 The main goal for a future sys-
tem should be to solve the similar, but more complex,
problem of global page breaking.

5 Page Layout

For the tasks of page makeup, 'IjEX provides the con-
cept of output routines together with insertions and
marks. The concepts of insertions and marks are tai-
lored to the needs of a relatively simple page layout
model involving only one column output, footnotes,
and at the most simple figures once in a while.4

The mark mechanism provides some informa-
tion about certain objects and their relative order
on the current page, or more specifically, informa-
tion about the first and last of these objects on the
current page and about the last of these objects on
any of the preceding pages. Such information is nec-
essary to construct certain kinds of running heads,
e.g., one with the name of the current chapter or
with information about the first and last word ex-
plained on the page, etc.

This is a global mechanism, however, so that
only one class of objects can take advantage of the
whole mechanism. If more than one class is imple-
mented, some of the features of the mechanism are
lost within one class.5 As a consequence of this defi-
ciency, one should extend the mark mechanism to a
system of independent marks which can be allocated
separately by a macro package.

The insertion mechanism seems to be derived
from 'footnote applications', and later extended to
allow for some simple kinds of floating in~ert ions.~
But placement of floating objects needs more than
simply storing them in a huge box which is split at
a certain point when the output routine is called.
Floats are accompanied by captions and the like,
which require differing treatment depending on their
final placement on the page. Floats may vary in
width even if they belong to the same class. On
the other hand, deferred floats in one class may in-
fluence or even prohibit the placement of floats in
other classes.

Some classes of insertions, like marginal notes.

cannot be handled by the primitives at all. To pro-
vide such features I P w , for example, defines its
own memory management for floating objects. Nat-
urally, such a mechanism is slow and space consum-
ing. Additionally, the quality of page breaks is fur-
ther reduced because it is difficult to maintain, for
free, all the information provided by the insertion
concept.

Another problem is the design decision that the
page breaking mechanism is, at least in its crucial
parts, available only in outer vertical mode; thus,
for example, space for insertions is not taken into
account when splitting a \vbox.

For a designer, w ' s model of interline glue de-
termination is very unfamiliar because it does not
allow specification of baseline to baseline spacing in
a page-spec without using lengthy and complicated
internal computations (see figure 2 on the next page).
This also means that it is nearly impossible to im-
plement grid-oriented specs, i.e., where (nearly) all
baselines fall into predetermined positions. This arti-
cle uses a grid-oriented spec (which was partly hand-
prepared) to show this aspect of high quality type-
setting. Details are given in example 3.

The design of suitable primitives for this com-
plex must go hand in hand with a new algorithm for
page breaking. comprising probably the most drastic
changes to the TEX system.

6 Penalties - measurement for decisions

Line and page breaks in TEX are determined chiefly
by weighing the "badness" of the resulting output7
and the penalty for breaking at the current point.
Such penalties are either inserted directly by the
user (during macro expansion) or added later by cer-
tain TEX formatting routines.

The main problem posed by the implicit penal-
ties is that they cannot be removed. If, for example,

3 It should be noted that a similar algorithm was developed
independently by J. Achugbue [2]. A comparison might lead
to further enhancements.

4 The term 'one column output' means that all text is
assembled using the same line width. Problems with variable
line width are discussed in section 4. Of course, this already
covers a wide range of possible multi-column layouts, e.g.,
the footnote handling in this article. But a similar range of
interesting layouts is not definable in w ' s box-glue-penalty
model.

5 The I4W implementation provides an extended mark
mechanism with two kinds of independent marks with the re-
sult that one always behaves like a \f i rs tmark and the other
like a \botmark. The information contained in the primitive
\topmark is lost.

6 This is only a guess from studying [17].
7 This is in some sense a measure of the difference between

the optimal and actual amount of white space on the line or
page in question.

340 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

E - m : Guidelines for Future Extensions

Figure 2: Baseline to baseline spacing

To implement a baseline to baseline dimension.
for example between a paragraph and a head-
ing (denoted by the question mark), the value for
\parskip has to be determined depending on the
\basel ineskip of the second paragraph. Unfor-
tunately the value of \base l inesk ip used will be
the one current at the end of the second paragraph
while the \parskip has to be computed at its be-
ginning.

the line breaking algorithm decides to put a penalty
after a line (e.g., from \widowpenalty), there is no
way to prohibit a page break at this place via macro
expansion except, of course, by setting the penalty
in question to infinity. This is the result of W ' s al-
gorithm that consecutive penalties pl and p2 behave
like p3 := min(pl,p2).

Local changes to the offending penalty parame-
ters are error prone and time consuming, since after
each change the following page breaks might fall in
different places. Additionally, future editions of the
document are made more difficult because every cor-
rection of this sort might produce undesired results
after a single change.

If we think in terms of the current 'I$$ (i.e.,
assuming all major algorithms are unchanged), it
would be better to adopt a different strategy in
the case of consecutive penalties, either p3 :=

max(p1,p~) or ps := 112 (pl +pa). For both functions,
the boundary cases pi = zkoo would need special
care. Breaking the chain of penalties could be per-
formed as usual by grouping or \kernopt or similar
procedures as is already done with ligatures, etc.

As we mentioned, this is a solution within the
framework of W 8 2 . If a totally different algorithm
for page breaking is designed, the concepts of local
penalties should be reconsidered, too, and probably
be replaced by a different strategy.

7 Hyphenation

When typesetting text, especially in
narrow columns, hyphenation is often
inevitable in order to avoid unreadable,
spaced out lines.
But readability has many faces; one of the golden

rules says [28] "Avoid more than two hyphenated
lines in a row." As we mentioned in section 2, this
cannot be specified in 'I$$ (unless one disables even
two consecutive hyphens).

Another problem is hyphenation of words at
places which are allowed but which distort the
meaning:

Stiefel- tern
Spargel-der

One should probably always forbid such problemat-
ical hyphens by choosing appropriate patterns for
Liang's algorithm [23]. But readability is also dis-
torted by the hyphenation of very short syllables
which give no or almost no information about the
word hyphenated and, therefore, slow down the read-
ing process considerably. With l$J 3.0 it is now
possible to adjust the minimal number of letters to
the left and right of a hyphen. This is necessary for
many languages which often have long words and,
for example, many two-letter syllables like German.
But there is no provision for assigning weights to
hyphenation points, i.e., it is a simple yes or no situ-
ation. One possible solution to this problem would
be to add another class of demerits which could be
applied via

users value

length of broken part

or a similar function. Of course, one probably has to
distinguish between pre-break and post-break text
(and/or length) in the formula.

Since the quality of a certain breakpoint also
depends on the word (i.e., the meaning of the word-
parts), we should consider whether such informa-
tion could be provided by the hyphenation algo-
rithm itself.

8 Box Rotation

TEX'S concept of document representation is strictly
horizontal and left to right oriented. Beside the
problem of processing documents containing right-
left or top-down oriented languages (which can be
handled to some extent by special versions of 7&X
[21]), this also poses unnecessary restrictions in stan-
dard applications. Except by using \special (for
POSTSCRIPT devices) it is impossible to rotate cer-
tain parts of the document. While arbitary rotation
is indeed next to impossible for most output devices,
rotation by 90' can be handled in a simple manner
by rotating the character cells. It should be easy to
include some sort of \ ro ta te primitive to m ' s lan-

8 The meanings of the words are 'step-parents' and 'sav-
ings', but the first parts of the words in the left columns
mean 'boot' and 'asparagus', respectively.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 341

Frank Mittelbach

guage which would allow rotating hboxes and vboxes
by multiples of 90 degree^.^ This would allow inclu-
sion for example, of landscape tables, etc., in a docu-
ment, without the need to use real glue and scissors
to add the page number or the running head.

9 Font Information

The IS0 Draft Standard [I] contains hundreds of
properties describing a font resource. While some
of them are accessible through w via \f ontdimen,
the majority are not. It seems advisable to add more
of them to the set of W'S parameters (for exam-
ple, a recommended \baselineskip), in order to
be able to make font family changes in documents
more easily.

9.1 Virtual Fonts

Use of font families in W, which differ in charac-
ter position, etc., from the defaults in the Computer
Modern family, is difficult but can be achieved as
proved in several projects [7, 351. The proposed use
of virtual fonts [20] may help to simplify matters in
this regard. If it is possible to agree on standards
for the position and the method of access for certain
accented characters for the most common Latin al-
phabet languages, it should be possible to typeset
multilingual documents (using the new features of
T@ 3.0) without introducing unnecessary variants
of standard fonts differing only in the availability
of certain accented characters as 'real' letters.1° A
good survey of accented characters in Latin alpha-
bet languages and a proposal for their access via
ligatures is given by Haralambous 181.

9.2 Ligatures and Kerns

Unfortunately, ligatures as well as kerns differ from
language to language. Take, for example, the 'ffl' lig-
ature which is not used in traditional German docu-
ments. On the other hand, such documents contain
'ch', 'ck' and 'ft' ligatures to obtain a better script.
The following examples shows the difference:

Druckschrift Druckschrift (standard)
Druckschrift Druckschrift (German ligatures)

Since these special ligatures do not involve new let-
ter shapes (at least not in most font families) it is
possible to achieve the desired results simply with
kerning. In the Computer Modern font family [15],
both 'ch' and 'ck' are contained in kerning programs,
but only for serif fonts. Other font families show
similar deficiencies. Thus, for typesetting German
documents, one either needs special physical fonts
(or at least virtual fonts), or a way to manipulate
ligature and kerning programs from within the TEX
program. For reasons of portability, a controlled ac-

cess to the ligature/kerning programs during font
loading seems preferable.

10 Tables

Well-designed tables are difficult to typeset even
for experienced hand composers. W ' s primitives
\ h a l i p and \val ign do a marvellous job in this
respect, even in complex situations. There is one im-
portant subclass of tables, however, which cannot
be handled at all. except with hand tailoring. It is
not possible to specify combinations of horizontally
and vertically spanned columns, e.g., an open curly
brace spanning several rows in one column while the
row structure is maintained on both sides.

Another feature often desired is the ability to
specify tables spanning several pages. While this
is difficult to achieve, since m ' s table primitives
normally read the whole table before determining
the column width, etc., it does not pose unsolvable
problems with the advanced features of l) jX 3.0.

11 Math

Mathematical typesetting is one of w ' s major do-
mains where no other automatic typesetting system
has been able to catch up. But even in this area sev-
eral things could be improved.

The source code of AM- [30] shows many
interesting examples where Spivak circumvents lim-
itations of m ' s formatting rules by introducing
complex code to define functions that should per-
form standard tasks in mathematical typesetting. A
detailed analysis of these problems (double accents,
under accents, placement of equation numbers, etc.)
would easily fill several pages; some comments can
be found in Spivak's documentation [29].

While W ' s spacing rules for math are quite
good, it seems at least questionable that many of
them are hardwired into the program instead of be-
ing accessible through parameters. The table for
spacing between different math-atoms is probably
the most important example of this sort.

Another problematical feature of m ' s math
typesetting routines is that sub-formulas are always
boxed at natural width even if the top level math-
list is subject to stretching or shrinking. This might
produce ugly results in certain circumstances. The
concept of boxing sub-formulas has the additional
disadvantage that such parts of a formula cannot
be broken across lines. Therefore programming con-
structs like \ l e f t . . . \ r igh t which automatically de-

9 This would also require changes to the dv i language and
thus changes in all driver programs.
10 The use of the accent primitive of is not recom-

mended for standard accents of a language [18, p. 541 since it
disables the hyphenation facility.

342 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

E w : Guidelines for Future TEX Extensions

termine the height of variably sized delimiters, can-
not be used in complex displays.

12 W ' s language

The language of rn is divided into two parts which
are described as the mouth and the stomach of TEX
[la]. This distinction is crucial in many applica-
tions since the output produced by l$X's gastro-
nomical routines cannot be fed again into its mouth.
i.e., its scanner. Actually, constructed boxes are
post-processable to a limited extent (via \ lastbox,
\unpenalty, etc.) but arbitrary constructions can-
not be handled this way because primitives for ma-
nipulating things like characters. rules, etc., are miss-
ing. In general, this distinction is the reason for
many obstacles in '-programming, which some-
times prevent any solution at all. A new system
should remove this two-class society of internal com-
mands.

Another severe problem of the language is its in-
completeness regarding standard programming con-
structs (such as certain conditionals, an acceptable
arithmetic parser, etc.), as well as special constructs
suitable for typesetting. To determine, for example,
the length of the last line in a paragraph (which
is done automatically by Q X when typesetting dis-
plays), one has to use a complicated and lengthy
computation, as shown in example 2, below. This ex-
ample also shows one of the inconsistencies of W ' s
language: \prevgraf has to be advanced using a
scratch register because the direct use of \advance
is forbidden. Many problems of this sort can be
found by looking at appendix D of the The QXbook
[la, pp. 373-4013 which is entitled "Dirty Tricks".
Actually nine out of ten examples therein are used
in the implementation of I & ' [22], which shows
that these examples are far less exotic than the pref-
ace to this appendix suggests. As examples of miss-
ing programming constructs, conditionals, such as
\ifmathopen, for determining math atoms should
be mentioned.

Such problems explain the fact that general ap-
plication software written in l$X (like easily
takes up more than a third of the available memory
without typesetting even a single letter. For better
and more stable front ends one needs a language
where such tasks can be specified in a more elegant
manner.

Some of w ' s restrictions in the language
are due to the representation of dimensions in
most TEX installations as 'real numbers', which
are machine-dependent." To make TEX neverthe-
less machine-independent, Knuth tried to prevent
machine-dependent results generated in w ' s stom-
ach from creeping into parts accessible to the scan-

ner, or to influence internally any decisions about
line or page breaks. As a result of this strategy, the
use of the code in example 2 together with a finite
\parf i l l s k i p (as in example I) will nearly always
produce the value \maxdimen instead of a decent
one.12 For the same reason, Knuth said in a conversa-
tion with the author at Stanford that he cannot per-
mit the removal of arbitrary items in a constructed
list since this would allow access to floating-point
arithmetic. But there exists another way to achieve
machine-independence, which would also eliminate
the restrictions mentioned, namely to change from
floating-point to fixed-point arithmetic13 which can
be done in a straightforward way, as Knuth himself
has acknowledged [16, p. 461.

TEX is a macro-language with all the advan-
tages and disadvantages. Anyone who ever wrote
a relatively long application in w knows that de-
bugging is extremely difficult. Transparent program-
ming, as proposed by the author of TEX [lo], is next
to impossible: it is no problem to write three lines
of code that cannot be understood even by
W p e r t s without a second and third look. But it is
much more difficult to write 'I)$ code that performs
a desired function, and is, at the same time, under-
standable to the average user. The examples given
in section 14 are good test cases; they are all straight-
forward W-coding, but their precise meanings are
difficult to understand without explanatory text.

Many problems arise from design decisions
based on totally different semantic constructs, which
have similar or identical syntactical structure. The
most important examples are the curly braces and
the dollar sign.14 The curly braces are used both
for delimiting arguments during macro expansion, as
well as for the start and end of block structures that
define the scope of certain declarations. In math
mode they have the additional meaning of delimit-
ing the scope of a sub-formula. Two consecutive
dollar signs normally start or end a display formula,
but in restricted horizontal mode they simply denote
an empty math formula. Such concepts should be
unraveled for the sake of clarity.

w ' s language is suitable for simple program-
ming jobs. It is like the step taken from machine
code (of the formatter) to assembly language. For

11 Actually, this only applies to internal dimensions repre-
senting stretching or shrinking of glue, computed kerns for
accents, and some others.
12 The reason is given in module 1148 of the 7&X program

[16, p. 4701.
13 Perhaps, always using the same floating-point algorithm

(either available in the compiler library or simulated by the
program) would be even better.
14 To be more exact, the three characters with \catcode

one, two, and three.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 343

Frank Mittelbach

complex programing tasks of general application
software, especially from the viewpoint of logically
tagged documents [5] , a more powerful language
with well-defined concepts for variable-bindings, pro-
cedures, etc., is preferable. While this aspect can
be achieved in a front end programming language
(which compiles into the TpJ language) it is bet-
ter to include it, for the sake of portability, in the

kernel. In the author's opinion, an ideal lan-
guage should combine the advantages of procedural
languages with the goodies of interpreter features.15
As a side effect, such a language would be partly
compilable.

13 Conclusion

The current TpJ system is not powerful enough to
meet all the challenges of high quality (hand) type-
setting. The author shares Knuth's dream of a sta-
ble, low-level formatter which is able to produce doc-
uments of highest quality. But, unlike Knuth, he
views the current TpJ only as a very good prototype
on the way to reach this goal.

As outlined in this paper, many important con-
cepts of high quality typesetting are not supported
by TpJ 3.0. Further research is necessary to design
a typesetting language which can handle these tasks
properly.

The user community needs an open mind
for new developments that keep the 'm-Sys tem'
the state of art in the field of computer typesetting.
As Knuth is no longer involved in research on typog-
raphy it is important for TUG to find an identity
in supporting and maintaining 'the best typesetting
program' and not only promoting the program that
Knuth has given to the world. If we don't strike for
even further quality our large community might fall
back to insignificance.

One important step for TUG would be to initi-
ate and (when advisable) support further research
projects which will take up the challenges posed by
the Stanford project.

14 Examples

Example 1 To avoid nearly empty lines at the end
of a paragaph, the following code could be used:

\parfillskip \columnwidth
\advance \parfillskip -1.5\parindent
\advance \parfillskip Opt minus \parfillskip
\advance \parfillskip Opt minus -1em

This setting was used throughout this article, for
example, which led to some changes in section 2.
With the standard setting (e.g., Opt p lus l f i l) ,
the first and third paragraph therein would have
ended with the word part 'ods' (from 'meth-ods')
and the word 'topic' respectively. Unfortunately,

this solution is not perfect either, since it produces
somewhat funny results with lines consisting of two
very short words.

Example 2 The following code determines the
length of the last line of the preceding paragraph,
using a feature of TpJ built into mathematical dis-
plays. This code can be used to determine, for ex-
ample, the amount of white space before an item-
ized list, or something similar. The example of code
given is not really suitable for direct applications of
this sort, since it simply displays the value found on
the terminal. But it could easily be extended.

This example illustrates several important things.
First, there is no elementary way to compute such
important information. Second, it is one of the (not
unusual) cases where information about the typeset-
ting process can only be got by introducing unde-
sired (since space-consuming) penalties, glues, and
null-boxes in the output.

Example 3 To introduce a grid-oriented spec all
flexible glue on the page has to be disposed of
(except for \skip\ foot ins) and the \vsize must
be adjusted. Titles are set with 8pt + 4pt =
\basel ineskip leading and we have to ensure that
the above space is kept after a page break. Lists are
set with 6pt + 6pt so the inner lines are halfway off.
Page breaks insides lists would need special treat-
ments, e.g., by increasing \topskip to keep the sub-
grid. Figures and examples in different type sizes
are measured and necessary kerns added to keep the
surrounding material in line. Again this approach
only works if no page break intervenes, which hap-
pens to be the case for this article. To use the bad-
ness calculation of for determining page breaks
a stretchable \ topskip can be used. During the
output routine this extra stretch must then be can-
celed again.

References

1. Information Processing - Font Information In-
terchange, ISO/IEC JTC 1/SC 18/WG8 NlO36,
February 1990.

15 Some sort of LISP-like system, but with primitives suit-
able for typesetting.

344 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

E - m : Guidelines for Future 7&X Extensions

2. Achugbue, James 0 . "On the line breaking prob-
lem in text formatting." Proc. of the ACM SIG-
PLAN/SIGOA, 2(1, 2), 1981.

3. Asher, Graham. "Type & Set: TJ$ as the en-
gine of a Friendly Publishing System." Pages
91 - 100 in 7JjX applications, uses. methods, Mal-
colm Clark [6].

4. Benson, Gary, Debi Erpenbeck, and Jannet
Holmes. "Inserts in a multiple-column format."
Pages 727 - 742 in 1989 Conference Proceedings,
Christina Thiele [31].

5. Bryan, Martin. SGML: an author's guide
to the standard generalized markup language.
Addison-Wesley, Woking, England; Reading
Massachusetts, second edition, 1988.

6. Clark, Malcolm. editor. T$JX applications,
uses, methods. Chichester,West Sussex, Eng-
land, 1990. Ellis Horwood Limited. Exeter con-
ference July 1988.

7. Conrad, Arvin C. "Fine typesetting with rn
using native autologic fonts." Pages 521 - 528 in
1989 Conference Proceedings, Christina Thiele
L311.

8. Haralambous, Yannis. " m and latin alphabet
languages." TUGboat, lO(3):342 - 345, Novem-
ber 1989.

9. Honig, Alan. "Line-Oriented Layout with W."
Pages 159- 184 in m applications, uses, meth-
ods, Malcolm Clark [6].

10. Knuth, Donald E. "Literate programming."
The Computer Journal, 27:97- 111, 1984. An
expository introduction to WEB and its underly-
ing philosophy.

11. Knuth, Donald E. Computers & Typesetting.
Addison-Wesley, Reading. Massachusetts. 1986.
Consists of [18, 16, 13, 12, 151.

12. Knuth, Donald E. METAFONT: The Program.
Volume D of Computers & Typesetting [ll],
1986.

13. Knuth, Donald E. The METAFONT~OO~. Vol-
ume C of Computers & Typesetting [ll], 1986.

14. Knuth, Donald E., September 1987. Talk given
at Gutenberg Museum Mainz.

15. Knuth, Donald E. Computer Modern Typefaces.
Volume E of Computers & Typesetting [ll],
July 1987. Reprint with corrections.

16. Knuth, Donald E. 7JjX: The Program. Vol-
ume B of Computers & Typesetting [11], May
1988. Reprint with corrections.

17. Knuth. Donald E. "The errors of m." Techni-
cal Report STAN-CS-88-1223, Stanford Univer-
sity, Department of Computer Science, Stanford,
California 94305, September 1988.

18. Knuth, Donald E. The 7JjXbook. Volume A
of Computers & Typesetting [I l l , May 1989.

Eighth printing.
19. Knuth, Donald E. "The new versions of T&%

and METAFONT." TUGboat, 10(3):325 - 328,
November 1989.

20. Knuth, Donald E. "Virtual Fonts: More fun for
Grand Wizards." TUGboat, 11(1):13-23, April
1990.

21. Knuth, Donald E. and Pierre MacKay. "Mixing
right-to-left text with left-to-right text." TUG-
boat, 8(1):14-25, April 1987.

22. Lamport, Leslie. l a t e x . tex, February 1990.
source version 2.09.

23. Liang, Franklin Mark. Word Hy-phen-a-tion by
Com-put-er. PhD thesis, Stanford University,
Department of Computer Science, Stanford, CA
94305, August 1983. Report No. STAN-CS-83-
977.

24. Mittelbach, Frank. "An environment for multi-
column output." TUGboat, 10(3):407415,
November 1989.

25. Mittelbach, Frank. Letter to Don Knuth,
September 1989. Suggestions for the "IQX 3.0
release. Published by R. Wonneberger in [34].

26. Plass, Michael Frederick. Optimal Pagination
Techniques for Automatic Typesetting Systems.
PhD thesis, Stanford University, Department of
Computer Science, Stanford, CA 94305, June
1981. Report No. STAN-CS-81-970.

27. Rynning, Jan Michael. "Proposal to the TUG
meeting at Stanford." m l i n e , 10:lO - 13, May
1990. Reprint of the paper that triggered TEX
3.0.

28. Siemoneit, Manfred. Typographisches Gestal-
ten. Polygraph Verlag, Frankfurt am Main, sec-
ond edition, 1989.

29. Spivak, Michael. amstex. doc, 1990. Comments
to [30].

30. Spivak. Michael. amstex. tex, 1990. AM=
source version 2.0 (without comments).

31. Thiele, Christina, editor. 1989 Conference Pro-
ceedings, volume 10#4 of TUGboat. TEX Users
Group, December 1989.

32. Wittbecker, Alan E. "T&% enslaved." Pages
603 - 606 in 1989 Conference Proceedings,
Christina Thiele [31].

33. Wonneberger, Reinhard. "m in an industrial
environment." In Briiggemann-Klein, Anne, ed-
itor, 1989 E u r o m Conference Proceedings,
1990. To appear.

34. Wonneberger, Reinhard. ""IQX yesterday, today,
and tomorrow." W h a x , 90(5), January 7 1990.

35. Youngen, R. E., W. B. Woolf. and D. C. Lat-
terner. LLMigration from computer modern fonts
to times fonts." Pages 513-519 in 1989 Confer-
ence Proceedings, Christina Thiele [31].

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 345

Vertical Typesetting with

Hisato Hamano
6 - 12 - 1 Minami Aoyama, Minato-ku, Tokyo, 1 0 7 24, JAPAN
+81 3 486-4518. hisato-h%ascii.co.jp@uunet.uu.net

Abstract

ASCII Corporation. as technical publishers, ourselves, has long
felt a need to introduce into the Japanese market a truly
Japanese technical documentation system. As a first step, three
years ago we developed a Japanese version of capable of
handling kanji.

This paper introduces our second step in producing an
even more sophisticated TEX system- the addition of a vertical
typesetting function.

Japanese - The Language

The history of the language. Near the beginning
of the third century, a man by the name of Wani
came to Japan from the nation of Kudara, located in
the eastern part of the Korean peninsula. With him
he brought volumes of The Analects of Confucius
and Senjimon; a Chinese textbook for studying
kanji, or Chinese characters.

This was the introduction to Japan of Chinese
characters developed in the 14th century B.C. but
it was not until the 4th and 5th centuries, when
trade volume between the two nations increased,
that kanjz really got its beginning.

The Japanese language originally developed
without a form of written expression, so it remained
oral and employed professional narrators called
katarzbe to relay news of important events when
necessary.

Those descendents of the original Chinese im-
migrants to Japan worked as official recorders,
transcribing the ancient Japanese language, called
yamatokotoba, into kanji and providing Japan with
its first form of written expression.

Japanese characters. Unlike the English alpha-
bet which is made of phonograms, kanji are
ideograms, that is, symbols representing things
or ideas. As is the case with hieroglyphics, kanji
began as drawings of natural objects.

JIS (Japan Industrial Standard) recognizes
6,353 characters in the level one and level two
categories used by computer manufacturers. Most
PCs now have level two capability due to the
availability of inexpensive memory. The Ministry of
Education recognizes 1,945 jo yo kanji as a minimum
requirement for education.

The Japanese language also has two phonetic
alphabets called kana collectively and divided into
hiragana and katakana. While katakana is used
mainly to express words which are non-Japanese,
hiragana forms a link between kanji and Japanese
grammar.

Japanese typesetting.
V-text and H-text. Japanese sentences can

be written in two ways (see Figure 1):

1. the form familiar to Western language speakers,
starting from the top lefthand corner of the
paper, writing horizontally to the right, with
the next line starting under the previous line
(hereafter referred to as L'H-text") and

2. the traditional form in Japan which was in
use before the introduction of H-text, starting
from the top righthand corner of the paper,
writing downwards to the bottom, with the
next line starting to the left of the previous line
(hereafter referred to as "V-text" or vertical
text).

2. V-text
Figure 1

346 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Vertical Typesetting with T '

v
Figure 2

As Japanese characters are essentially those of
China, the basic form of writing is vertical, al-
though at times numbers and English words appear
horizontally (H-text).

Primary school textbooks are written in V-text
for Japanese language studies and social studies but
are H-text for mathematics and science. Outside of
those texts for the sciences most textbooks appear
in V-text format.

The line break rule (kinsoku). There are
no spaces in Japanese sentences between words, so
line breaks in the middle of words are not only
possible but quite acceptable, whereas in English
there are restrictions on where line breaks should
occur.

The Japanese line break rule is called kinsoku
and states that line breaks should not occur imme-
diately before or after a symbol. For example r 1
are used in Japanese as quotation marks and line
breaks should not occur between an opening quota-
tion mark and the character after it or between a
closing quotation mark and the character before it.

Justification. As there are no word spaces
characters are justified across the full line.

Handling non-Japanese in V-text. Short
forms in English such as "DEK" (Donald E. Knuth)
appear one letter at a time, vertically, but full
spellings such as "Donald E. Knuth" appear written
sideways (rotated 90") in a manner similar to that
seen on the spine of a book (see Figure 2).

Japanese computer files. As the need for busi-
ness users of personal computers grows, the need
to use Japanese kanj i at the computer level grows
also.

There are several problems involved in handling
Japanese on computers that are not present in
English.

Two-byte codes. Japanese characters are ex-
pressed using two-byte codes. However, one-byte

code English words are mixed in the same sentence
at times with the two-byte kanj i codes.

There are presently three coding schemes for
mixing one and two-byte characters: (1) JIS
(Japanese Industrial Standard), (2) Shift-JIS, and
(3) EUC (Extended Unix Code).

In the JIS system, an escape sequence is used
to switch between one and two-byte characters.
Both Shift-JIS and EUC use an eighth bit to make
such switches. In EUC the eighth bit of the JIS
code is set at 1 only, while Shift-JIS employs a
different method. For communications, JIS is used;
for personal computers, Shift-JIS is used; and for
UNIX, EUC is most common.

Typesettin~ H-text with
Once the px~61ems of two-byte code usage and
the line break rule are solved, H-text can be
typeset. The Japanese used here is not NTT's
JTEX (TUGboat 8, no. 2) but one independently
developed by ASCII Corporation. We call this
or Publishing !$X.

Font switching for the two types of coding.
We have prepared two current fonts. Computer
Modern is used for the one-byte current font and
a Japanese font for the two-byte current font,
with the selection depending on the coding method
employed. For mixing, we can use JIS, Shift-JIS, or
EUC.

Line break rule. A small amount of glue is used
between each character to make line breaks and
justification possible, and where line breaks are not
possible a penalty is imposed. This penalty is auto-
matically inserted and can be adjusted for imposing
penalties before or after characters. Although there
are many characters to deal with, we have not used
a lookup table because it would take too much
memory. Instead, we used a 256 entry hash table,
as there is a restricted number of cases in which
penalties would apply.

Typesetting V-text with TEX
We have tried using TEX to do H-text typesetting
and found that it rivals the traditional methods of
typesetting. This lead us to consider using it to do
some actual publishing; however, as V-text is still
the most common form of official printing in Japan
the inability to typeset vertically would confine such
a system to a very restricted market. We therefore
decided to extend TEX to enable it to handle V-text
typesetting.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 347

Hisato Hamano

yoko direction tate direction

Figure ?

T h e essence of TE.X typesett ing. The major
problem to be overcome is determining whether the
text being handled is to be printed as H-text or
V-text.

The basis for TEX typesetting is to combine
characters to form a line, combine the lines to
form a page and combine the pages to form a
document. Forming lines of characters is called
hrnode in m, while forming pages of lines is called
vrnode. This means that if hmode is used to line up
characters vertically and vrnode is used to line up
the lines right to left, V-text typesetting becomes a
possibility.

Direction. In Japanese publications, V-text and
H-text are used together. For example, many books
have body text in V-text with the page numbers in
H-text. In other words, it is necessary to be able to
use both V-text and H-text in any one document.

To solve this problem, ASCII has employed
the idea of direction. The directions available
are t a t e or vertical and yoko or horizontal. If
the direction is yoko, TEX behaves in the regular
manner. In other words, while in hmode the
elements are lined up from left to right, while vrnode
allows for formation from top to bottom. When
using t a t e direction and hrnode the elements are
lined up from top to bottom, while vrnode allows
for formation from right to left.

The direction default is yoko. Text can be
switched between V-text and H-text when necessary,
but only when the hlist or vlist involved is empty.
In the \ t a t e primitive, the direction is set as tate
while in the \yoko primitive it is set as yoko.

Boxes w i th direction.
In m, lines and pages are all boxes with

parameters expressed in W (width), H (height) and
D(depth). Each box has a Bline, or baseline, from
which W, D, and H are measured. In hmode, Bline

Figure r

will line up boxes parallel to the direction of the
text.

In the yoko direction, the Bline is horizontal.
W is the length of the Bline and H is the length
above the Bline while D is the length below the
Bline.

In the t a t e direction the box Bline is vertical.
There is a 90' difference between characters lined
up in hmode and lines done in vrnode and so the
size of the box is expressed in terms revolved 90°(see
Figure 3).

As explained before, it is possible to change
direction in the middle of a document. In other
words, a box formed in the t a t e direction can be
lined up in yoko direction. The opposite is also
possible.

(tate direction, hmode)
ab c
\hbox{\yoko 123)
XY*

In this example, \hbox is formed in a yoko direc-
t ion but abc, the box itself, along with xyz are in
t a t e direction using hmode (vertical).

The direction of the Bline and the value of W,
H and D for this \hbox differ for t a t e and yoko
directions. When the box is made in the yoko
direction the Bline is horizontal and (W, D , H) =
(W,, H,,D,). When the box is actually used in
the tate direct ion the Bline becomes vertical and
(W, H, D) = (Wt, Ht, Dt). The relationship between
(W,,H,,D,) and (Wt,Ht,Dt) is Wt = H,+D, and
Ht = Dt = w,/2.

As shown in the illustration, the directions of
the Bline inside and outside the box are different
(see Figure 4).

Fonts for V-text. Japanese fonts for use in H-text
and V-text are different. There are some differences

348 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Vertical Typesetting with 'l&X

3 3 - x
3 t i .

difference - 1
x

Figure !

in the symbols used and in the information needed
for typesetting (see Figure 5).

The baseline for H-text fonts is set horizontally
while the baseline for V-text fonts is set vertically.
In order to make vertical typesetting possible, the
two fonts used for H-text (one-byte English and H-
text Japanese) are supplemented by a third font for
vertical Japanese text. When one-byte characters
are used in tate direction they are rotated 90".

Implement at ion

It is now necessary to explain how to implement
this form of TEX.

Using two-byte code. In standard T)$ the char-
acter field for char-node or token has 8 bits only.
When using two-byte code, two char-nodes, or two
tokens are linked to form one character with the
two-byte code information added to the info field
in the second node.

In the char-node we can check the font field to
determine if the character is a one-byte or two-byte
character. (see Figure 6)

For tokens, the category code tells us if the
character is in one or two-byte code. If the category

1 1 byte char

2 byte char

1; hk

I 2 byte code 1]
I Figure 6 1

code is 16(kanji), l7(kana) or 18(other two-byte
character) it is a two-byte character.

Boxes of Different Directions. When yoko di-
rection boxes are linked to yoko direction lists,
and tate direction boxes are linked to tate di-
rection lists, it is possible to link vlist-nodes and
hlist-nodes directly to the list as in original m.

However, when a tate direction box is linked
to a yoko direction box or vice versa the dir-node
is used. The dir-node has the same structure as the
hlist-node and vlist-node. For example, the result of
the sample "Boxes with direction" is as shown in
Figure 7.

In the width, height and depth fields of the
hlist-node the (W, H , D) = (Wh, Hy, Dy) values,
when the hbox was made, are entered. In other
words, the structure of the hlist-node does not
change and the routine for making the hlzst-node is
the one found in original T&L

In the width, height and depth fields of the
dir-node the (W, H, D) = (Wt, Ht , Dt) values of
the box when actually used are entered. When a
list containing abc, dir-node, and xyz is processed,
the (W, H, D) of the dir-node can be typeset much
as directly linked hlist-nodes and vlist-nodes can be
typeset.

Japanese tfm file format (jfm format). In the
tfm files to date only 256 characters could be
registered. This would not allow use of Japanese
characters so the tfm format has been extended and
called the j f m format.

Fonts are not divided into sub-fonts and there-
fore a variety of fonts can be used in the same
document.

If metric data for each character are added, the
file would become too large, so we have endeavored
to keep this file as small as possible. To do this
we took groups of characters which enjoyed similar
font metrics and called each of these groups a

Figure 7 1

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 349

Hisato Hamano

char-type. As almost all kanji have the same
metrics we were able to put them in one group. A
total of about 10 groups cover hiragana, katakana,
and commonly used symbols.

In the jfm file there is a table showing in which
char-type group each character belongs along with
the metrics for that group. In this char-type table
are listed the code and the char-type code. The
code '0' has been assigned to the kanji group as it
is the biggest and all codes not appearing in this
table are considered to be 'O', or kanji. This move
has kept this table relatively small.

The metric information is provided in a format
that is very similar to tfrn although the l ig lern
is somewhat different. As there are no ligatures
in Japanese this area has been used for the glue
mentioned previously. The l ig lern field has thus
become the gluekern field.

The difference between the Japanese tfrn and
the standard tfrn can be found in the first half
word. In the Japanese version, if the first half word
uses a V-text font, it is given a value of 9. If using
an H-text font, it is 11. In the standard tfrn file
the first half word is "length of the entire file, in
words" and the standard tfrn file is never less than
12 words.

The tfrn for the Computer Modern font remains
unchanged.

Dvi file format extension. In the dv i file we
have used the set2 command to express Japanese
and have extended the dvi file format for use of
V-text.

In the dv i driver there are modes for printing
H-text and V-text. In the H-text mode the dv i
driver remains unchanged. The beginning of each
page is in H-text mode so dv i files can be printed
out as they have been in the past.

In the print V-text mode the coordinate system
for the dv i driver is different. Using commands
such as right, w, x, set, set-char, setrule, etc., the
current point is moved in the vertical direction, and
the commands down, y , z etc. are used to move
the current point in the horizontal direction (see
Figure 8).

A new command, dir, has been added to dv i
to switch between H-text and V-text. 255 has been
used as the code for dir.

As a new command has been added, new dv i
files cannot be handled by the standard dv i driver.
In order to distinguish between standard and new
files, the preamble id-byte has been set at 2 and the
postamble id at 3.

Programming. A 10,000 line Change File has
been used to make all of the necessary changes from
Knuth's original rn to our m.
The Printer Driver

Extensions made to the dv i format and the two-
byte code mean it is not possible to print out
files using standard printer drivers. Also, the font
file is another problem area since one font contains
thousands of characters.

Recent Japanese printers include Japanese
fonts in various sizes. Japanese 'QX fonts, un-
like the Computer Modern font, use a common
coding scheme so they can be used in place of fonts
found on such popular printers as the Japanese
Laser Writer I1 (NTX - j).

Japanese printing is done using the fonts that
come with the printer and printer drivers
for various printers are available as public domain
software.

At ASCII we use a Canon OEM machine at
480 dpi for printout work. This machine had no
fonts so we had to make a new font file format.

Japanese fonts. Very few characters can be stored
in the font file in formats such as gf, pxl, and pk,
so a new format (j x l format) has been added.

j x l has code fields of two-bytes in px l format.
We use packing the same as that in the pk format
for bitmap work.

We have produced j x l format bitmap fonts
from outline font data we received from Dai Nippon
Printing Company Limited.

Availability

is public domain software and is enjoying
wide distribution and use. There is also some m
printer driver software in the public domain.

Dai Nippon Printing Co. Ltd. provides photo- - - -
ipesetting services and ASCII's Japanese version

right

1-
down right 7

H-t ext mode
-

V-text mode
Figure 8

350 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Vertical Typesetting with w

of Donald Knuth's The W b o o k was typeset and
printed using this system.

Acknowledgement
I would like to thank all of those people who have
made our possible. Mr. Sagiya of DIT Co.
Ltd. helped in the testing of our product while Mr.
Enari of Dai Nippon Printing Co. Ltd. provided
Japanese outline fonts.

Japanese TEX, which forms the core of p w ,
was developed by Mr. Ohno and Mr. Kurasawa.
Mr. Iseri and Mr. Tamura taught me the traditional
aspects of typesetting and printing. Mr. Leach, who

helped in producing this paper, was one of many
ASCII employees whose help was invaluable.

In pl&X we have been able to use many of the
original routines. Original TEX and the very
elegant manner in which it was made we owe to the
author of w, Professor Donald E. Knuth.

References

Saito, Yasuki. "Report on JTEX: A Japanese l&Xn,
TUGboat 8, no. 2.

Kurasawa, Ryoichi. "Japanization of w7 (in
Japanese), Japanese Q X distribution tape.

TUGboat, Volume 11 (1990), No. 3Proceed ings of the 1990 Annual Meeting

Hisato Hamano

Sample Output by

Appendix

' ~ Y J JL b (Philip J. Davis, Reuben Hersh &g ?,%H&f-7% 7 X + --%%?) J. bl

352 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Structured Document Preparation System
AutoLayouter

Yoshiyuki Miyabe, Hiroshi Ohta, and Kazuhiro Tsuga
Matsushita Electric Industrial Co., Ltd., 1006 Kadoma, Kadoma-shi, Osaka 571 Japan
+81-6-906-4600. CSNET: miyabe%isl.mei.co.jpOuunet.uu.net

Abstract

We have developed a structured document preparation system
AutoLayouter, which consists of an easy-to-use structured editor
and a Japanese I4W based formatter.

Not only have we designed better user interfaces, but we
have introduced a simple document structure. A document
produced with AutoLayouter is a one-dimensional list with each
node corresponding to a logical component of the document.
This use of the simple structure largely contributed to making
the editor easy to use but powerful enough both for editing the
document structure and its contents, which may contain finer
substructures.

Since we use the simple structure, we had to append various
macros to complement the differences between our structure and
the I&= begin-end environments. We also developed a device
driver which converts dv i files to Kanji Postscript files.

Introduction
In Japan, most of the commonly used document
processing systems are Japanese word processors,
designed originally to produce beautiful documents
without having to resort to hand writing. The most
serious problem in early Japanese word processors
was to make Japanese input efficient, easy, and
fast. This problem has been almost solved by the
development of efficient Kana (Japanese alphabet)
to Kanji (Chinese character) conversion algorithms.
Now we face the second step in document processing
of Japanese.

From the beginning Japanese word processors
have been designed with some layout facilities, using
the fact that Japanese characters usually have the
same width; thus spaces and tabs may be used
to align them. In addition, Keisen characters,
special line characters, were created to solve other
alignment problems and to create tables of any
shape.

One direction for the advancement of Japanese
word processors is to augment the layout facilities,
in order to format documents more flexibly, as
English desk top publishing systems do.

On the other hand, our analysis of the Japanese
word processor market led us to conclude that

Japanese word processors are used with a great vari-
ety of documents and, therefore that some objective
other than just the beautification of documents is
indicated.

Among computer software people, Japanese
versions of T)$ and L 4 W are being used as
replacements for Japanese word processors. But
due to the complex syntax and the scarcity of
supporting tools, it is extremely difficult for the
typical users of word processors to take advantage
of W'S automated layout.

Basic Concepts of AutoLayouter
We developed AutoLayouter as a based docu-
ment preparation system whose objective is to give
W ' s power to the users of Japanese word pro-
cessors, and to induce them to write documents in
more logical ways, similar to those used in making
documents with I4W.

If the main task is to print documents, it is
reasonable to use paper-oriented document prepa-
ration systems such as Japanese word processors or
desk top publishing systems; but when the object
is to manage documents, other means are required.
Even in this case, if the size of a document is too
large for it to be developed by only one person,
one has to look for a better way to produce it.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 353

Yoshiyuki Miyabe, Hiroshi Ohta, and Kazuhiro Tsuga

Furthermore, when requirements of managing and
delivering documents increase, working with such
paper-oriented document preparation systems can
cause serious problems:

Document file contains layout i n fo rma t ion mixed
wi th text . In the word processor file, formatting
information is mixed in with the text. For in-
stance, special codes are used to specify the size
and location of titles. But when manipulating the
file in order, for example, to search the contents or
reuse them, these codes interfere and must often
be removed so that the text can be retrieved.

Document file format is formatt ing sys tem depen-
dent. When delivering a document to another
person to be reworked, file format codes must be
compatible for both sender and receiver. Main-
taining such compatibility often creates imped-
iments to further development of the system
itself.

The AutoLayouter project represents an at-
tempt to change the document prepartion style
in Japan. We focused first on logical contents of
documents, and put layout of the documents aside
temporarily.

Architecture
Figure 1 shows the architecture of AutoLayouter.

We put structured document files in the kernel
of the system, and in the near future, we shall
develop a document database to manage them. To
create the document files, we developed a structured
editor. The editor checks the document structure

Structured
Editor

Document Document
Delivery Tool Document Management

Filcs

Formatter r:_l
Output
Devices 1.11

Figure 1: Architecture of AutoLayouter

whenever it is modified, and warns the user of
invalid operations. So the document structure is
always properly guaranteed.

The structured files are processed by a format-
ter that uses the Japanese version of U r n . We
also developed various device drivers including a
previewer and a Postscript converter for dv i files.
The whole system was developed on Panasonic's
Unix workstation BE using X Window System.

Structured Editor

Problem of structure-driven editing. Mark-up
languages such as SGML and IPW, when used with
a typical text editor, have the following advantages:

Document portability. Users may select any text
editor to make documents, so they can edit the
documents on any machine.

Edit ing eff iciency. Since mark-ups are natural ex-
tensions of the process of inputting the text,
users can edit marked-up documents almost as
efficiently as normal documents.

Unfortunately, the use of these mark-up sys-
tems may result in the creation of documents con-
taining fatal syntax errors. Because the syntax rules
are too complicated for many users, error correction
may require more time than is reasonable.

Since our aim was to develop AutoLayouter
for users of Japanese word processors, rather than
for programmers, we developed a structured editor
which may be used without any knowledge of mark-
up languages; and, best of all, it never produces
syntax errors.

Two kinds of structured editors may be consid-
ered:

Hypertext type. This type displays the document
structure and the document contents in separate
windows. So the editor normally consists of two
parts, one of which handles the tree structure of
the document while the other is concerned with
the text contents of each tree node. Although
one can view the document structure easily, it
is difficult to read the contents of the entire
document smoothly.

Tag embedded type. Roughly speaking, this type
extends the character set to include mark-up tags
which specify the document structure. Usually all
the tags look similar, which makes it difficult to
distinguish an important tag from unimportant
ones. To solve this problem, some systems use dif-
ferent fonts for contents with different structures
or they align the important tags outside the text
field.

354 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Structured Document Preparation System AutoLayouter

Figure 2: Snapshot of editor screen (in Japanese)

Document structure. We first designed a frame-
work of document structures. We took the approach
that the document structure provides ways to view
the contents; and that different views may make
it possible to perform appropriate processing. One
view may show the logical or semantic structure
of the document, and another its layout structure.
These two structures must be distinct. Tne next
design requirement is that the document structure
should be simple enough to be understood by users
of Japanese word processors.

Based on these initial ideas, we made a hierar-
chy of document structures as follows:

1) Logical structures indicate the semantics of
the text. That is, logical structures may be
used not only in formatting the document
but searching its contents from a database
and translating between different documents.
The editor displays logical structures as iconic
labels, outside the text field.

2) Structures specifying layout information only,
such as indentation or font changes, may be
embedded in the text as mark-ups. We modified
a text editor so that it can handle these mark-
ups as normal characters. .

3) Footnotes and references are exceptional logical
structures embedded in text, but should be
distinguished from the layout structures.
Snapshots of the editor screen are shown in

Figure 2 and Figure 3.

Figure 3: Snapshot of editor screen (in English)

Table 1: Logical structure component attributes

Classification I Attributes
Com~onent Id. I Label Name
~ u l e i I Max. Occurrences

I Min. Occurrences

Structure definition. The structure definition of
a document type is quite simple when compared
with a full-scale SGML.

An entire document is a one-dimensional list
of logical structure components such as title and
section, where the logical structure is specified using
restricted regular expressions. Each component of
the structure has attributes shown in Table 1.
In the table, Maximum and Minimum occurrences
for a component give the restrictions that apply
to the regular expressions for components of the
structure. Contents type can be text, file name,
integer, PostScript, and UTEX.

Substructures, such as layout structure to in-
dicate indentation, font changes, and so on, are
specified separately from the logical structure. The
substructures are embedded in the contents text
of the logical components in mark-up form. Mark-
ups for the layout structures have a type that
is one of quasi-character, begin-end, and toggle.
Quasi-character type inserts layout objects such as
skips and arrows. Begin-end type locally replaces
a property of the characters between the marks,

Display Mode

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 355

Contents Type
Priority Levels
Default Lines

Yoshiyuki Miyabe, Hiroshi Ohta, and Kazuhiro Tsuga

and toggle type changes a current property after
the mark. Type information for the marks provides
the formatter with instructions for recovering from
mark-up errors.

Architecture. We show the system diagram of the
structured editor in Figure 4, components of which
are explained in detail below.
Structure definition parser. This parses structure

definition files of the specified document type,
and generates rules to be used in the structure
editor.

Structure rule checker. When the user edits a struc-
ture component, the structure editor always asks
the structure rule checker if the desired editing
operation may produce an illegal structure. If the
answer is affirmative, the structure rule checker
returns the reason to the structure editor, and
the editor displays a panel which explains why
the desired operation is rejected.

Structure editor. Each component of the logical
structure is displayed as an iconic label outside
the text field, corresponding to its text contents.
One can edit labels with mouse operations. For
instance, to insert a label, the user clicks the
insert button on the label panel, and selects the
desired label from the label palette. Then the
user specifies a label on the editor screen, and the

Structured Editor

Structure
Definition Files

E.:e 1 17
Manager

User Interface
Definition Files

Structured
Document
Files

I

Formatter

Figure 4: System diagram of the structured editor

desired label is inserted. This design is similar to
that of a hypertext editor, mentioned above.

Contents text editor. The contents text editor is a
typical text editor customized using X Window
System's text widget. Kana-to-Kanji conversion,
which is managed in a front end processor, is
performed in a special window, and the converted
text is inserted by the text widget. Mark-ups
specifying fine structures such as layout struc-
tures and references are inserted from a pop-up
panel. Editing operations for the mark-ups can be
restricted to maintain legal nesting of begin-end
type mark-ups.

User interface manager. The editor's menus and
panels may be changed to suit the type of
document being edited. This is done using the
on-line manual, which explains how to use labels
and tags of the type of document currently being
edited. We parameterized all the menus and
panels which depend on the document type, and
stored the interface definitions in the definition
file. Each time the document type changes, the
manager consults the definition file and resets the
menus and panels appropriately.

Features. Our structured editor supports several
editing styles:
Top-down editing. When the editing process consists

of filling in the blanks in an existing form, the
labels corresponding to the items on the form
appear on the screen as default labels. When
articles are being edited, the default structures
include title, author, date, and abstract. Users
may construct any document structure simply by
using the mouse to insert or delete labels and to
specify the field to which the new ones apply.

Bottom-up edzting. Marking up a document is an ex-
ample of bottom-up editing. We support replace,
merge, and the splitting of labels by selecting
these options from a pull down menu. Other
useful forms of bottom-up editing involve cut-
and-paste of text strings.

Outline editing. Outline editing is not really an
editing feature, it is more like a different mode for
viewing a document. When editing, users may se-
lect one of three display modes: normal, one-line,
and selective. One-line mode displays only the
first line of the text corresponding to each label,
which allows the user to scan items thoughout
the document. Similarly, selective mode displays
only important labels, such as sections, and their
contents, where the labels that are important are
so designated in the label definition file.

356 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Structured Document Preparation System AutoLayouter
Structured Editor

Structured Document Files

--

Forma t t e r
r-

I
Document File

Converter

I Convention Rule Files

Formatt ing Processor

(L*TBY)

1 Style Files

I Device Drivers bz7

Figure 5: System diagram of the formatter

For matter

Architecture. The system's block diagram of the
formatter is shown in Figure 5 . A detailed ex-
planation of the components in the figure is as
follows.

Formatting processor. We use the Japanese
version of I 4 W as a formatting processor.
provides basic language facilities, such as macro
definitions, as well as a simple formatting model
which recursively constructs component boxes.

I4W appends various parts and environments
that are convenient for writing articles, that simplify
and speed up the preparation of style files.

Structured document file. The file consists
of labels and their text contents as described in the
document structure section.

Document file converter. This converter
reads the structured document file, and scans each
label and its contents. The conversion rules are
stored in the conversion rule file of the document
type. As described above, each label is converted to
its corresponding macro, and its contents become
the arguments of the macro. When the conversion is
performed, contents are checked to verify that they
satisfy the conditions required for their label, for
example, kind of text type (text, integer, file name,
reserved word, and so on).

Figure 6 shows how the document file converter
works. A typical line of the structured document
file is

The document file converter reads the conversion
rules written in the conversion table and makes a
I4?(file.

Style file. On the basis of the document type,
the formatter selects a corresponding style file.
On the whole, conversion from logical structure
to layout structure is a one-to-one mapping. One
exception is represented by sequential restraints
involving logical labels such as the requirement that
the label "caption" must always be followed by the
label "table". In such a case, style parameters will
be modified. In order to allow for such conditional
layout, we created a function to trace the sequence
of input labels.

Device drivers. We developed the following
device drivers to output dv i files to screen and
printers:

Preuiewer. The previewer displays printer images of
the formatted document on a X Window System.
Since the physical resolution of the CRT differs
greatly from that of current laser printers, we
display the characters on the screen using fewer
dots, scaling the same font used by the printer.
When scaling the font, we maintain the quality
of the display font by using an anti-aliasing
technique, in which the gray scale of each dot
is calculated in accordance with the number of
black points in the sampling area of the original

PTEX file

. dvi file e
\dacBparagraph { %
.
}\enddoc@paragraph

Figure 6: Document file converter

Style file
I \def \doc@paragraph { . . . } I

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Yoshiyuki Miyabe, Hiroshi Ohta, and Kazuhiro Tsuga

font. Furthermore, the previewer displays a small
magnifying window on the preview window, so
that a finer image of the formatted document is
also available.

Printer drivers. In addition to supporting raster
image printers, we developed a converter from
a dvi file to Postscript source code. With this
converter, graphics files written in Encapsulated
Postscript can be imported. In order to supply
various fonts to the raster image devices, men-
tioned above, we also developed a font manager
based on Japanese outline fonts. For English
fonts, we use those supplied with 7&X.

Concluding Remarks

Development of AutoLayouter is the first step in
the construction of our new Japanese document
processing system. The kernel of the system involves
structured document files and, for this, we have
developed an easy-to-use structured editor and a
I4QX-based formatter.

In the future we plan to construct a document
database in which structured documents are stored.
We will also need a style file editor. At this time,
style files are programmed directly using Bl&X
or TI-$, which may prevent users from changing
or creating their own styles; one possibility being
considered is a WYSIWYG editor to specify layout.

Acknowledgements
The authors would like to thank T. Ohno and
R. Kurasawa, who developed Japanese T ' , and
Lincoln Durst for his suggestions on this paper.

Bibliography

Adobe Systems Incorporated. "Encapsulated Post-
Script Files", Specification Version 2.0. Mountain
View, California, 1989.

IS0 8879. "Information Processing - Text And
Office Systems - Standard Markup Language
(SGML)". Geneva ISO, 1987.

Kurasawa, Ryoichi. "Japanese at ASCII Corpo-
ration" (in Japanese). Proceedings of l&X Users
Group Japan, TX - 97 - 5 (September 1987).

Lamport, Leslie. Urn: A Document Preparation
System. Reading, Massachusetts: Addison-Wes-
ley, 1983.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Getting m n i c a l :
Insights into QjX Macro Writing Techniques

Amy Hendrickson
wno logy Inc., 57 Longwood Avenue, Brookline, MA 02146
617-738-8029 Internet: amyh@ai.mit.edu

Abstract

Most of us understand the basic form of 7&X macros but
that understanding alone is often inadequate when we need to
solve certain problems. We need additional insight to be able
to develop methods of passing information, moving text with
changed catcodes, preserving blank lines. and more. Writing a
large macro package brings in a new set of issues: how to avoid
bumping into implementation restrictions. e.g., 'constraints of
hash size, string size. and others: how to make a pleasant user
interface; how to make your code as concise as possible.

Some of the techniques to be discussed here include making
a macro with a variable number of arguments: changing catcodes
in macros, defining a macro whose argument is intentionally
never used: conserving hash size by using counters instead of
newifs; csname techniques and non-outer dynamic allocation;
and table making techniques. Finally. some suggestions are
included on methods to use when developing new macros.

A Quick Review of Some Important
Primitives

Expandafter. \expandaf t e r , a TEX primitive
often used in this article, affects the timing of
macro expansion. Macro expansion is that step in
W ' s processing which changes a control sequence
to whatever that control sequence is defined to
represent. \expandaf t e r is usually followed by
calls to two macros. It expands the first macro
following it only after it has expanded the second.
Thus, \expandafter makes it possible for the first
macro to process the pieces of the second macro as if
the second macro were written out, not represented
by a control sequence.

Here is an example: If we define \ l e t t e r s and
\ l ooka t l e t t e r s ,

\def\letters{xyz)
\def\ lookat let ters#l#2#3@irst arg=#l,

Second arg=#2, Third arg=#3)

and follow \ l ooka t l e t t e r s with \ l e t t e r s ? !,
\ l ooka t l e t t e r s takes the whole definition of \ l e t -
t e r s as the first argument. ? as the second argu-
ment. and ! as the third. Thus

\ lookat let ters\ let ters ? !

produces

First arg=xyz. Second arg=?, Third arg=!

But if we use \expandafter, \ l ooka t l e t t e r s will
be able to process the contents of \ l e t t e r s for each
argument:

produces

First arg=x, Second arg=y, Third arg=z ? !

String. \ s t r i n g is a l&X primitive which causes
the control sequence following it to be broken into a
list of character tokens in order to print the control
sequence or to process it with another macro.
\ t t \str ing\TeX will produce \TeX. (What is the
\tt doing in there? It makes the backslash print
as backslash (\) when it would otherwise print as a
quote mark ("). If you are curious about this, look
up \escapechar in The W b o o k .)

csname. \csname . . . \endcsname is an alterna-
tive way to define and invoke a command.
Its function is the inverse of that of \ s t r i ng .
\ s t r i n g takes a control sequence and turns it into
tokens: \csname . . . \endcsname takes tokens and
turns them into a control sequence.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Amy Hendrickson

Commands called for with \csname produce the
same results as the backslash form (e.g., \csname
TeX\endcsname and \TeX are equivalent) but the
\csname construction combined with \expandaf t e r
allows you to build and invoke a control sequence
dynamically at the time the file is processed, as
opposed to knowing its name at the time the
macros are written. This technique has many
interesting and useful applications, as we will soon
see.

If and ifx. Since both \ i f and \ i f x are condi-
tionals used to compare tokens, the 'l&,X user may
well wonder when to use \ i f and when to use \ i f x.
When we understand how each of these conditionals
works, we may conclude that the answer is to use
\ i f only when comparing szngle tokens and to use
it with care.

How 'if' works. \ i f expands whatever im-
mediately follows it until it arrives at two unex-
pandable tokens. It then compares them to see if
their charcodes match. This test is useful to see if
a given letter is upper- or lower-case and in some
other instances where we need to test a single token.

The two tokens that are compared are the first
that appear after \ i f , even if they are both found
inside the same macro following it. Understanding
that principle makes sense of these samples which
would otherwise be mystifying.

\def\aa{ab)
\def\bb{ab)
\if \aa\bb

tests false, because \ i f expands \aa and compares
'a' with 'b'. Whereas

\def\aa{aa)
\def\bb{bb)
\if \aa\bb

tests true, because ?# compares 'a' with 'a' in the
macro \aa. \ i f doesn't process \bb since it has
already found two unexpandable tokens and in this
case will cause the letters 'bb' to print since the
conditional is set to true and \bb is found in the
true part of the conditional.

There is another problem to consider. Since
\ i f expands a control sequence to its bottom level,
meaning every control sequence that is found in the
definition of a command being expanded will itself
also be expanded, it may generate an error message
if a control sequence is expanded that contains an Q
in its name.

This problem arises because Plain 7JjX com-
monly includes Q as part of macro names. with the
catcode of @ set to that of a letter. The catcode of Q
is set to 'other' in normal text so that when a Plain

TEX command of this sort is expanded in text the
Q is no longer understood as a letter, and ?# will
give the user an error message about an undefined
control sequence. For example,

\if \footnote X Yes\else No\f i

produces this error message:
! Undefined control sequence.
\footnote #I->\let \@sf

\empty \ i fbode. . .
How 'ifx' works. \ i f x , on the other hand,

will not have this problem since it only expands to
the first level of macro expansion. If \dog is defined
by \def\dog{\cat), for instance, \ i f x will expand
\dog as far as \cat but will not expand \cat to use
its definition.

This means that when we want to compare
control sequences, and to supply one control se-
quence as an argument to a macro, we can use the
\ i f x conditional to look at the name of the macro
supplied without having to worry about macros
that may be contained in its definition.

For example, we can define \def\aster{*)
so that we can use it to compare with another
macro. Inside the macro where we want to make
the comparison, we can write

\def\sample#1{\def\one{#l)\ifx\one\aster . . .
making both the argument to \sample and * be
defined as macros.

When \sample is used, \ i f x causes only one
level of expansion. If the argument given to \sample
is \footnote. as in the \ i f example above. \one
will be defined as \def \one(\f ootnote). \ i f x
will expand \one to find '\ footnote' but will not
expand it any further, and will not give an error
message.

Another reason to use \ i f x to compare control
sequences is that \ i f x will pick up both control
sequences following it and compare them. When we
try the same samples with \ i f x that we did with
\ i f , we will find that we get results opposite to
those we got with \ i f -and we will get the results
we would want when comparing control sequences.

\def\aa{ab)
\def \bb{ab)
\ifx\aa\bb

tests true, because \aa and \bb match each other
in their first level of expansion, whereas

\def\aa{aa)
\def \bb{bb)
\ifx\aa\bb

tests false because the first level of expansion of \aa
and \bb do not match.

360 TUGboat, Volume 11 (1990). No. 3-Proceedings of the 1990 Annual Meeting

Getting m n i c a l : Insights into Macro Writing Techniques

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 361

Picking Up Information

Defining a macro that will pick up and pro-
cess a variable number of arguments. There
are many instances where you might want to allow
a variable number of arguments. Table macros
are one such case, in which the user might supply
the width of each column as an argument, and
the number of columns may well vary from table
to table. A table alignment macro that deter-
mines whether each column in the table should be
aligned to the right, left, or center, is another case
where processing a variable number of arguments is
necessary.

There is a general method for constructing
a macro that will accomodate a variable number
of arguments. This method is to pick up all the
arguments as one unit and then take that unit apart
as a second step. For example, \table lin 2.3in
4in* can be the command to start a table using
dimensions to specify the width of each column.
When \table is defined as \def\table#l*{. . . .)
we can pick up all the dimensions as the first
argument, since the first argument ends with *,
then use a second macro to process each dimension
as its argument. The second macro will call itself
again after each dimension is processed until all the
dimensions have been used.

Here, in a sample macro, we define \pickup
as \def \pickup#l*(. . .3 to use it to pick up
everything between \pickup and the * as its first
argument. Then we use \expandafter to allow
\lookatarg to process the contents of the first
argument.

The definition of \lookatarg contains a looping
mechanism: It is a conditional that tests to see if its
argument is equal to '*'. It will keep calling itself
(recursing) until its argument is *. It calls itself by
redefining the command \go within the conditional,
and calling for \go outside the conditional. (\go
must be placed outside the conditional. If it were
to be used inside the conditional it would take
the \else or the \fi as its argument and massive
confusion would result.) When \lookatarg sees '*'
as the argument, it will define \go as \relax and
thus will not call itself again.

First we define \aster so that we have a
command to use with \ifx to compare with the
argument of \lookat arg:

\def \aster{*)

Now we can compare the argument of \lookatarg
with \aster. Thus, with

\def\lookatarg#1{\def\one{#l)
\ifx\one\aster\let\go\relax
\else Do Something \let\go\lookatarg
\f i\go)

if we use the \pickup macro as follows
\pickup abc def*

the results would be:
D o Something D o Something D o Something Do
Something D o Something D o Something

\lookatarg has been invoked 6 times since it picked
up 6 tokens before it found the *. We can substitute
some other command for 'Do Something' and build
a more useful macro.

Here are two applications of the technique
demonstrated in \lookatarg; a macro to underline
every word in a given section of text, and a macro
to process a given section of text to imitate the
small caps font.

First, we define \underlinewords, which picks
up the whole body of text to be underlined:

\long\def\underlinewords #I*{%
\def\wstuffi#l)\leavevmode
\expandafter\ulword\ustuff *)

Here \ leavemode asks TEX to go into horizontal
mode. Since each word will be placed in a box,
we need this command to prevent the boxes from
stacking vertically, as they would in vertical mode.

Now we define \ulword which will unpack the
text picked up, word by word, put each word in a
box, and provide a horizontal rule under each:

\long\def\ulword#l {\def\one{#l)%
\ifx\one\aster\let\go\relax
\else\vtop{\hbox{\strut#1)\hrule \relax)

\let\go\ulword
\f i\go)

The space given after the argument number in the
parameter field will allow us to pick up one word at
a time, since the collection of the argument will be
completed only when \ulword sees a space. Here
we use \underlinewords:

\underllnewords
non-outer dynamic allocation*

which results in:

non-outer dynamic allocation

The macro \fakesc is another construction
using this technique. It lets you set text in large
and small caps, imitating the 'small caps' font. Its
arguments are, in order. the font for the larger
letters. the font for the smaller letters, and the text
that is to be set in small caps.

When we use \fakesc we need to declare the
two fonts to be used:

\f ont\blg=cmrlO
\font\med=cmr8

Amy Hendrickson

and then
\fakesc\big\med Here are Some Words to be
Small Capped. NASA, Numbers, 1990*

will result in:
HERE ARE SOME WORDS TO BE SMALL
CAPPED. NASA, NUMBERS, 1990
The macro starts by defining the two fonts and

the text to be processed; there is a space after #3 in
\def\stuff(#3 3 because \pickupnewword needs
a space to complete its argument when the last
word is found as \stuff is expanded:

\def\fakesc#l#2#3*{\def\bigscfont{#l)%
\def\smscfont~#2~\def\stuffC#3 1%
\expandafter\pickupnewword\stuff *}

\pickupnewword picks up one word at a time, in
order to preserve the space between words. If we
just asked \pickupnewlett to process the entire
third argument of \f akesc, the space between
words would be thrown away as irrelevant space
appearing before the next character being looked
for as the argument of \pickupnewlett. Here,
then, is the definition of \pickupnewword:

Once \pickupnewword has picked up the word.
\pickupnewlett is used to test each letter to
determine whether it should be capitalized. If
so, it uses the larger size font: otherwise, the
smaller. \pickupnewLett tests to see if the argu-
ment is uppercase by using the first argument to
define \letter. \def \letterC#i). and then defines
\uclett er in an uppercase environment.

Now it uses the \if conditional to compare \letter
and \ucletter If they match \pickupnewlett
makes the current letter or number be printed in
the larger font; otherwise the smaller font is used.
Note that we can use the \if conditional here since
we are only comparing single letters. So, finally, the
definition of \pickupnewlett:

When to pick up text as an argument, and
when to to pick up text in a box. The correct
timing of catcode changes is an issue of concern to

the macro writer. Picking up text as an argument
will usually be the right way to provide information
for the macro. but will fail if you need to change
catcodes, since catcodes are irrevocably assigned at
the time rn reads each character. Thus, by the
time Tl-$ has picked up an argument, the catcode
of all the tokens in the argument are set, and
no amount of fiddling with the argument within a
macro will change this.

Even a catcode change asked for in the body
of an argument will not effect a catcode change
because the catcodes of the tokens will already be
set by the time expands the request for the
catcode change.

There are two ways to solve this problem. In
simple cases, one can build a macro containing the
desired catcode changes and then invoke a second
macro within the first, i.e.,

In \changecat a catcode change is produced
by \obeylines which changes the catcode of the
end-of-line character, - ^ M , to 13 ('active') so that it
can be defined as \par. Once that catcode change
is made. \pickupchanged is invoked. Its argument
has the end-of-line character set to category 13
at the time the argument is picked up. Notice
the \bgroup command in \changecat is matched
with the \egroup command in \pickupchanged to
confine the catcode change.

Used:
\changecat
What
Happens
Here?
\endchange

xx What YY
Happens
Here?

But, though this example will work for a
catcode change set within the \changecat macro it
will not allow \changecat . . . \endchange to pick
up an argument that contains a catcode change,
for instance, an argument containing macros to
produce verbatim text, as we could do with the
following technique.

The two-part macro defined below will build a
box. starting it in \pickupcat with \setboxO\vtop
\bgroup. Any material found between it and \end-
pickup will be expanded, and finally the box will be

362 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Getting W n i c a l : Insights into W Macro Writing Techniques

completed with the \egroup found in \endpickup,
a construction that allows a catcode change between
the first aild second part of the macro.

\def\pickupcat{\global\setbox0
\vtop\bgroup\hsize=lin\obeylines}

\def\endpickup{\egroup%
\centerline{XXX\vtop{\unvboxO~YYY~}

\pickupcat.. .\endpickup is shown using a pre-
viously defined verbatim environment, \begin-
verb.. . \endverb, to pick up and move verbatim
text in a box. Once we see this principle, we
can see that a revision of this macro would allow
us to place verbatim text in a figure environment,
or in a table, or in another environment where it
would normally be difficult to introduce material
with changed catcodes. For one example:

\pickupcat
\beginverb

Test of
%$--*a\

Verbatim

text.
\endverb
\endpickup

produces:

XXX Test of YYY

Verbatim

t e x t .
Looking ahead at end of line to preserve
blank lines. Since TEX normally ignores blank
lines between paragraphs and in some cases we
might want to maintain blank lines, we need to
develop a way to test for blank lines and provide
vertical space when one is present. In this case, we
are not interested in picking up text but in picking
up information. What comes after each end-of-line
character?

As previously mentioned, \obeylines changes
the end-of-line character, -7 to \par. You can
define -^M to do other things as well. For instance,
you can define it to be a macro that will supply
a baselineskip when the next line is blank or a
lineskip when the next line is not.

In this example, --M will be defined as \li-
neending, a macro that includes \ fu tu re le t to
look ahead in the text. If the character that it sees
is itself (\ l ineending), the next line is blank, since
there is nothing from one end-of-line character to
the next one. The macro \looker will then supply
a baselineskip. If it does not see itself, indicating
that the next line is not blank, \looker will supply
a lineskip:

Example:
\saveblanklines
Here is

a blank line,
and a non-blank line.
\endsavelines

which produces
Here is

a blank line,
and a non-blank line.

Passing Information: When Counters
Can be More Advantageous than
Newif's

Hash size, the size of that part of m ' s memory in
which it stores control sequence names, is usually
not something about which the macro writer has to
be concerned. When building a large macro package,
however, hash size can be exceeded, making the
number of control sequences defined an important
issue. One way to economize on the number of
definitions in a package is to use counters to pass
information rather than using \newif s.

When the number of control sequences is not
important, \newif can be used to create a condi-
tional. This conditional can then be set to true or
false in one macro, and tested to see if it is true
or false in another as a way of passing information
from one macro to another.

However, every time a \newif declaration is
used, three new definitions are generated. If saving
hash size is an issue, we can use \newcount instead,
and only one new definition is generated.

We can use \newcount to allocate a counter
and assign it a name, e.g., \newcount\testcounter.
Then, instead of setting a conditional to true or
false, i.e., \g loba l \ t i t l e t rue , and testing for it,
i.e., \ i f t i t l e . . . \e lse . . . \ f i we can test for
the value of the counter. For example,

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 363

Amy Hendrickson

could be the equivalent of \ g l oba l \ t i t l e t r ue . We
can then use this test:

Counters have the additional advantage of
allowing you to test for a range of niiinbers, i.e.,

\ifnum\testcounter>l . . . \else . . . \fi
so you can write more compact code when testing
for a number of options.

For instance, if we were to write a macro that
allowed the user to choose to fill a box by pushing
the text to the left, center, or right, we could
assign a numerical value to each of the options. If
we assigned a value to \testnum according to the
plan, le f t=O, cen te r= i , r ight=2, we could test
for a range of numbers when another macro was
determining which way to fill the box. The test
could look like this:

\hbox to\hsize{\ifnum\testnum(l
%% if text is to be pushed to the left

\else
%% if text is to be either centered or
I I h! pushed to the right, do \hfill

\hf ill\f i
(t e x t)

\ifnum\testnum>l
%% if text is to be pushed to the
%% right, don't do \hf ill

\else
%% or text is either centered
%% or pushed to the left

\hf ill\f i)

This same principle can be used in more complicated
cases as a way of reducing great masses of nested
conditionals to a test of the range of the value of a
particular counter.

Methods of Conserving Hash Space

As mentioned earlier, using counters to pass infor-
mation rather than \newif \ th inspace s is one way
to help prevent the hash size from being exceeded.
Here are some others.

Input separate macro files on demand. To
reduce the number of macros in a macro file, break
up the complete macro package into a general macro
file and a number of secondary macro files. Within
the general macro file definitions can be made that
read in the secondary files only when the user calls
for a macro for a particular function. For instance, a
file containing all the table macros will only be read
in if the user uses the general table macro. This
principle can be used for listing macros, indexing
macros, and any other sort of macro that will not
necessarily be used for every document.

Using non-outer dynamic allocation. Dynamic
allocation is the way macro writers are able to
access the next available number of a dimension,
box, or counter at processing time and assign
a symbolic name to it. \newdimen, \newbox and
\newcount are the commands that allocate these
numbers dynamically. It is safer to use dynamic
allocation in a macro than to use a particular
numbered box, counter, or dimension, since it
prevents accidental reallocation.

Unfortunately, all of the commands in this
useful set are \outer. which means that they
cannot be declared within a macro. By making
these dynamic allocation macros non-outer, we can
then include them inside macros and only declare
new counters or new boxes or new dimensions when
they are needed.

Here is how to make these commands non-
outer. Simply copy the original definition, supply
a new control sequence name and define them
without the \outer that originally preceded the
definition. For example, the definition of \newbox
was originally

\outer\def\newbox{%
\allocQ4\box\chardef\inscQunt)

Here are the new versions, \nonouternewbox. etc.:
{\catcode'\Q=ll
\gdef\nonouternewbox.E%

\allocQ4\box\chardef\inscQunt)
\gdef\nonouternewdimenC%

\allocQl\dimen\dimendef \inscQunt)
\gdef\nonouternewcoUntC%

\allocQO\count \countdef \inscQunt)
\catcode1\@=12)

In the next section we will see these non-outer
commands being used in a table macro, only making
named boxes or dimension when needed. Ma.cro
writers may find other uses for this technique as
well.

Fun with Csname

One of the really useful features of \csname is that
control sequences can be expanded within the body
of the \csname. . . \endcsname construction:

\expandaf ter
\de f \ csname\ tes tmacro \endcsnd%

(d e f i n i t i o n) . . . I
Counters can be used:

\expandaf ter
\def\csname\testcounter\endcsname{~

(d e f i n i t i o n) . . .
Counters with roman numerals can be used:

364 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Getting m n i c a l : Insights into Macro Writing Techniques

\expandaf ter
\def \csname\romannmeral\testcounter%

\endcsname{(definztion) . . .)
You can even make a definition out of numbers or
other symbols that ordinarly are not allowed for a
control sequence name:

\expandafter\def\csname 123&#\endcsname{%
(definztion) . . . 1

The only thing to remember here, is that any control
sequence made with \csname that contains anything
other than letters must be invoked as well as defined
with \csname: \csname 123&#\endcsname is the
way to use this macro.

Using \csname with \expandafter makes it
possible to do all sorts of things that would not
otherwise be possible. Some examples will be found
in the following text.

Macros that define new macros using data
supplied. One example involves having one macro
define another macro where the name of the second
macro depends on data supplied in the text.

In the example constructed below. \usearg
takes the first two words as arguments #I and
#2, reverses their order and uses them to make a
control sequence name. This control sequence is
then defined to be the complete name and address
of the person whose name was used to form the
control sequence name.

The order of the name is reversed so that the
names of the new macros can be sent to an auxiliary
file and be sorted alphabetically. The Appendix
illustrates how a more elaborate form of this set of
macros may be used to manipulate mailing lists.

\obeylines below changes the catcode of the
end-of-line character (- 7 4) to 13 so it can be used as
a argument delimiter in the definition of \usearg:
\obeylines also defines --M as \par so that every
line ending seen on the screen is maintained when
the text is printed:

{\obeylines
\def\usearg#l #2^-M#3"-M^^M{%

\expandafter\gdef\csname #2#i\endcsname
{#I #2\par #3})

With this definition,
\usearg George Smith
21 Maple Street
Ogden, Utah 68709

produces

George Smith
21 Maple Street
Ogden, Utah 68709

The Appendix contains a macro subsystem for
processing and sorting address labels; it demon-
strates this technique and many of the others
discussed in this paper.

Macros that define new macros using a
counter. Here is another use of \csname: In this
case, it is used to define a macro that will itself
define a new macro every time it is used, with the
name of the new macro determined by a counter
whose number is represented with roman numerals.

This can be used to construct a series of macros
that expand into areas of text to be reprocessed at
the end of a document. For instance, this technique
could be used to produce a set of slides from given
portions of the text of a document.

In the following example. each time \testthis
is called it will define a new control sequence. I t
makes the name of the new control sequence by
advancing \testcounter which is operated on by
\romannumeral to produce a new set of letters.
These letters will appear in the name of the new
macro.

Each control sequence is then sent to an aux-
iliary file, embedded in code to make the slide.
(The slide formatting code is represented here as
[[[I]]). At the end of the document the auxiliary
file containing all the definitions can be input, to
produce a set of slides.

\newcount\testcounter
\testcounter=501

%% just to start with a large
%% number to make into roman numerals

\immediate\openout\sendtoaux
\jobname.aux %% opening a file to write to

\def\testthis#l{%
\global\advance\testcounter by1
\expandaf ter\gdef \csname%
\romannumeral\testcounter XYZ\endcsname{%

[[[#11113
\immediate\write\sendtoaux{%
\noexpand\csname\romannumeral\testcounter
XYZ\noexpand\endcsname))

Here is an example of \testthis being used:
\testthis{This is the first bit of text . . . I
\testthis{This is the second ...)

The code above writes the following lines into the
. aux file:

\csname diiXYZ\endcsname
\csname diiiXYZ\endcsname

and when the .aux file is input, these commands
produce

[[[This is the first bit of text...]]] [[[This is the
second.. .I]]

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Amy Hendrickson

Designing generic code with csname. Another
really important use for \csname constructions is a
way of making compact code for a section of a macro
that repeats many times with a small variation each
time. Table macros are often examples of this kind,
since they tend to have repeating sections, one for
each column.

We consider below some parts of a set of
macros for table construction showing several ways
that \csname can be used. The form adopted for
the \hal ign command line. using a & immediately
after the \ha l i p { , will allow the specifications for
this column to be used for each column in the table.

Using \csname with a counter allows this set
of commands to be defined only once. Each new
column entry will cause the \colcount counter
to advance making the otherwise similar column
definition use a new counter value inside the
\csname . . . \endcsname constructions.

Non-outer dynamic allocation is used to name
only those counters, dimensions, or boxes that are
needed when the table is made up. A new set is
declared for each column of the table. Since we don't
need to guess ahead of time how many columns are
going to be used, only those dimensions or boxes
that are needed will be declared. In addition.
\ i fdef ined (below) tests to see if the particular set
of dimensions and boxes has been used in a previous
table, and will only declare a new set if they have
not been defined previously.

\xtab and \dtab involve counters only. so they
can be used later in a \csname. . . \endcsname con-
struction where it doesn't matter if the expansion
will produce numbers as part of the control se-
quence. \gtab and \vtab, on the other hand, need
to be used as ordinary control sequences which is
the reason for the \romannumeral command that
will produce letters instead of numbers when the
\gtab and \vtab are expanded.

\as izetab and \f in ishasizetab will use these
boxes and counters to actually set the table entries.

Here, finally, are some definitions for table
construction:

\def \multipagetable{\global\f irstcoltrue
\halign\bgroup%

Bc\global\advance\colcount byl\relax%
\ifdefined{\the\colcount tab){){%

\edef \xtab{\expandaf ter\csname
\the\colcount tab\endcsname)%

\edef\dtab{\expandafter\csname
\the\colcount tabwide\endcsname)%

\edef\gtab{\expandafter\csname
\romannumeral\colcount

gapped\endcsname)%
\edef\vtab{\expandafter\csname

\romannumeral\colcount

\if def ined{align\the\colcount tab){){%
\edef\atab{\expandafter\csname

align\the\colcount tab\endcsname)%
\expandafter\nonouternewcount\atab)%

\asizetab##\finishasizetab\cr)

A \csname . . \endcsname construction defined
using one counter can be invoked using a different
counter, if that proves useful. Another part of the
code for multipage tables uses a second counter
to invoke macros defining boxes containing the
column heads, used when the table continues over
page breaks. Even though the original definition
used \colcount as the counter to name the boxes.
\contcolcount, another counter, can be used in
another macro to invoke the same definition. When

expands \csname. . . \endcsname construction
it produces a number as the replacement for the
counter, so the name of the counter used doesn't
affect the result. This might be helpful in cases
where you don't want to change the value of one
counter, but still wish to use a \csname construction
that contains it.

Tips on Table Macros

\everycr is a primitive for a token list. It
functions similarly to \everypar or \everymath in
that its definition will be used every time the named
environment is present, in this case after every \cr .
By setting \everycr equal to some definition we
can insert a set of commands after every line in a
table, since every line will end with a \cr. A simple
example is this:

\everycr={\noalign{\hrulel~

which will insert a horizontal rule automatically
after every \ c r in the table. Once this possibility
is discovered. the macro writer may realize that
there are many other things that can be done with
\everycr, such as including a set of conditionals
that will call for horizontal lines with breaks in
them, double horizontal lines. thicker horizontal
lines, thicker lines under some columns but not
under others. and so on.

You can include a counter which is advanced
every time \everycr is called, and use that counter
to determine how many lines have been used in
the table, in order to stop and restart the table.
making it possible to have a table that will continue

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Getting m n i c a l : Insights into 7J$ Macro Writing Techniques

for hundreds of pages without running out of
memory.

Moreover, you can call for a small vertical skip
in the \everycr definition which will allow the
table to break over pages. If you use the following
construction, your table will break over pages and
a horizontal line will appear both at the bottom of
the previous page and at the top of the new page,
without the user having to know ahead of time
where the table will break.

\everycr={\noalign{\hrule\vskip-Isp\hrule>)

When Doing Nothing is Helpful
The usual form of a macro with an argument is (in
its most basic form) \def \example#l(#l). There
are cases in which not using the argument can
be helpful when you want to get rid of something:
\def \example#lC).

You can use this principle to prevent large
sections of text from being processed by TEX.

\long\def\ignorethis#l\endignorei)

Thus
\ignorethis
Here is some text that will be ignored . . .
\endignore
This is where \TeX\ starts printing text..

will produce

This is where starts printing text ...
You might want to use this macro in the process
of debugging a document you are working on. All
text between \ignorethis and \endignore will
be ignored. making it possible for 'I$$ to print
only the part of the document in which you are
interested. TEX will run out of memory after about
6 pages of text is picked up by the \ignorethis
macro, depending on the implementation of TEX
being used, but if you want to ignore more than
6 pages of text you can end the first \ignorethis
with \endignore and enter a second \ignorethis
. . . \endignore.

A slight improvement, however, is needed to
prevent TEX from complaining if an \outer com-
mand is found in the argument of \ignorethis.
This is the error message which we would like to
avoid:

! Forbidden control sequence found
while scanning use of \ignorethis.

We can avoid it by changing the catcode of the
backslash to be that of a letter. Now there
will be no commands processed until \ignorethis
encounters \endignore and the catcode changes are
turned off.

{\catcode'\)=O I catcode' l\=12
IlongIgdefIfinish#l\endignore{Iegroup)%
3

Note that here, too, #I is never used in the
replacement part of the macro.

Getting rid of backslashes. Here is another
example of an argument that is thrown away:

\def\stripbackslash#1#2*C\def\one{#2~

which only uses the second argument. throwing
away the first argument, in this case stripping away
a backslash from a control sequence supplied by the
user. \stripbackslash can then be used in another
macro which needs a control sequence without its
backslash to work correctly. for instance:

When this is used,

produces
testmacro

Instead of simply printing the control sequence
without the backslash, \newdef can be rewrit-
ten to test to see if a given macro has already
been defined. In this example, \newdef tests
to see if the expansion of the control sequence
\csname\one\endcsname, (where \one, was defined
by \stripbackslash to be the control sequence
supplied by the user minus its backslash) is equal to
\relax. This takes advantage of the TEX conven-
tion that a previously undefined control sequence
invoked in a \csname . . . \endcsname environment
will be understood to be equal to \relax, whereas
an already defined control sequence will not:

\def\newdef#l{%
\expandafter\stripbackslash\string#l*

%% \stripbackslash defines \one
\expandafter

\ifx\csname\one\endcsname\relax
%% \one is expanded to be the
%% control sequence the user supplied
%% minus the backslash.
%% If csname construction equals
%% \relax, do nothing

\else 1% Else, give error message:
{\tt Sorry, \string#l has already been
defined. Please supply a new name.)

\f i)

In the test below, notice that we do not get an error
message for \cactus which hasn't been previously
defined, but we do get a message for TEX. which is
defined:

TUGboat, Volume 11 (1990). No. 3-Proceedings of the 1990 Annual Meeting

Amy Hendrickson

then

\newdef\TeX
\newdef\cactus

produces
Sorry, \TeX has
Please supply a

already been defined
new name.

Not using boxes. Similar to not using arguments,
there are times when setting a box and then not
using it can be useful.

When writing a macro to make text to wrap
around a given figure, we might want to use a
test box to put a given amount of text in, say,
a paragraph, which has been picked up as an
argument to a macro. We can then measure the
box to see if it will exceed the depth of the figure.
If it does not, the box can be used as it is, but if it
does, the box can be ignored and the argument re-
used, with changed \hangindent and \hangafter,
to allow the text to fit around the figure neatly.
This works because text picked up as an argument
to a macro does not yet have its glue set, so it can
accomodate different line widths.

Another use for a box that is never printed
is to use it as a container in which to expand a
macro having symbols in the parameter field. For
example, if the macro \ sp l i t t ocen t r y is defined
by

\def\splittocentry#l-#2-#3(\gdef\oneC#l)
\gdef\two{#2)\gdef\three{#3)}

we can use it in a another macro to process
an argument which may or may not include the
hyphens, i.e.,

The hyphens that are necessary to complete the use
of \ sp l i t t ocen t r y are supplied in the boy but they
will not print if the replacement for #2 turns out to
supply the hyphens already. Since \one, \two, and
\ three are globally defined (\gdef), their definition
will be understood outside the box.

Some General Macro Writing Tips

There are several commands that can make the
process of macro writing easier.

\show is a m primitive that will cause the
definition of the macro it precedes to appear on your
screen when you run m on a file that contains
it. \show\samplemacro will cause the definition
of \samplemacro to be appear on your screen. for
example. \show can be temporarily included inside
a macro to let you see what is being picked up as
arguments. For instance, if

\test some, stuff

will help you see what is being picked up as
argument #i and #2. In this example the results are
obvious, but there are more complicated situations.
For example, when one macro is looking at the
contents of another macro, a test like this can
quickly help you understand what l'QX sees when it
picks up an argument. a helpful debugging tool. It
also has the advantage of giving you information at
the time you TEX your file, saving you the steps of
either previewing or printing the .dvi file.

\show will also send the definition of the macro
that it precedes to the . log file, a feature which
you can take advantage of when you are interested
in redefining a Plain l'QX macro. If you write
\show\raggedright, for example, in a test file and
run on that file, the definition of \raggedright
will appear in the . log file. You can then move
those lines of code from your . log file to your macro
file and you will have saved yourself the trouble of
looking up the command in The m b o o k and
copying it into your file. Now you are ready to
make changes to the original macro.

A related command. \showthe. will give you
the current value of a token list. like \everypar.
Including \showthe\everypar in a test file can
tell you what m sees as the current value of
\everypar at that point in the file. You can also
use \showthe to get the current value of a counter
or dimension. You may want to include a \showthe
temporarily in a macro you are developing, similarly
to \show. as a debugging tool.

Finally, using \message in a conditional while
working on a macro can give you helpful informa-
tion. You could put this code in a headline, for
instance, to be able to see the state of a particular
conditional in the headline.

\headllne=C %
\iftitle

\message{SEES TITLE, WIN)
\else

\message{NO TITLE, LOSE)
\fl.. . I

or include a similar construction in the body of a
macro while you are testing it. When you the
file you can quickly see if you are getting the results
you were expecting.

368 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Getting W n i c a l : Insights into TEX Macro Writing Techniques

Appendix

Code to Alphabetize an Address List
These macros demonstrate many of the techniques
discussed in this paper. The macros process an
existing an address list by taking the first line of
each address, re-ordering the name with last name
first, then turning the name into a control sequence
which is sent to an auxiliary file. The user must
alphabetically sort the auxiliary file. The resulting
sorted file is then input back into the originating
file and the whole address list will be transposed
and printed in alphabetical order.

The user enters \ a l pha l i s t at the beginning of
an address list, and a blank line and \endalphal is t
at the end. \ a l pha l i s t picks up the name, then
makes a macro using the name (last name first)
as the control sequence. This control sequence
is sent to auxiliary file with the same name as
the originating file and with an . a l f extension.
The file f i lename. a l f must be sorted to produce
f i lename. srt, using a sort routine on the user's
system. If DOS, write

sort < filename.alf > filename.srt

\endalphal is t checks to see if fi lename . srt
exists, and if so, will \ input f i lename. s r t . The
sorted list of control sequences will produce an
alphabetized address list.

First we name dimensions and counters and set
them to arbitrary sizes.

\ a l pha l i s t makes every new paragraph start
with the command \look. \obeylines will main-
tain the same line endings as seen on the screen.

First we discuss the definition of \look, then
we will consider the macros used in its definition.

\ look picks up the entire name. It then
defines it as \ t e s t . \ t e s t is placed in \box0
and expanded after \throwaway j r which defines
\fullname. Then \fullname is expanded after
\ takeapar t to define \nameinrev. \nameinrev is
the name in reverse order; it is used as the name of
a control sequence that defines the entire name and
address. \nameinrev in a csname environment is
also sent to an auxiliary file so that it can be sorted
alphabetically. Here is the definition of \look:

\obeylines
\everypar={)
\expandafter%
\gdef\csname\nameinrev\endcsnam~%

\vtop to\heightofentry{\parindent=Opt
\vf ill\hsize=\widthof entry
#1
#2
\vf ill))%

\ imrnediate\write\alphafi le%
{\noexpand\csname\nameinrev%
\noexpand\endcsname)%

\global\everypar={\look))

Now we consider the commands used in the
definition of \look.

To make the last name appear &st in the com-
mand sent to the auxiliary file, we count the number
of parts to the name ("Mr. R. G. Greenberg" has
four parts, for example) and use \ i f case to select
the correct order. After \nameinrev (for 'name in
reverse order') is defined, it will then be used in the
\ look macro to create a control sequence by being
expanded within a csname.

\makedef gives a control sequence name to the
argument of \ takeapart according to the number
of times \ takeapart is invoked:

In order to make an \ i f x comparison, we set

\ takeapart loops until it sees the *: which will
be supplied in the \throwaway j r macro:

TUGboat, Volume 11 (1990): No. 3-Proceedings of the 1990 Annual Meeting

Amy Hendrickson

We want to alphabetize according to the last
name, and not mistakenly use ' Jr.' as the last name.
The first argument ends when \throwawayjr sees a
comma, which would normally occur before a Jr. or
Sr. following a name. The second argument is never
used, which is how Jr., or Sr., or 111, are thrown
away :

\def\throwawayjr#l, #2{%
\gdef\fullname{#l * 1)

\throwawayjr is used inside a box that is
never used, so we can supply the comma that ends
argument #I, in case there is no comma in the name
given. If a name is used that contains a comma,
that comma delimits the first argument. Since the
extra comma is in a box that is never invoked, the
extra comma is never printed.

Here is code to open an auxiliary file whose
name is the same as the file containing \ a l pha l i s t ,
but with an . a l f extension:

\newwrite\alphaf ile
\immediate\openout\alphafile=\jobname.alf

Now we have finished describing the commands
needed to define the names and address and to send
their macro names to the auxiliary file, and it is
time to input the sorted list.

\endalphal is t turns off the \everypar that
was established with \ a l pha l i s t and inputs the
. srt file if it exists. Since all the definitions precede
\endalphal is t , when the . srt file is brought in
with the csname control sequences in it. each control
sequence will produce its defined name and address:

\def \endalphalist{\egroup
\global\everypar={}
\openin1 \jobname.srt
\ifeofl %

\message{<<Please sort \ jobname. alf
to produce \jobname.srt >>)

\else
\immediate\closeinl
\input \ j obname . srt

\f i)

Example:
\alphalist
George Smith
21 Maple Street
Ogden, Utah 68709

Jacqueline Onassis
Upper East Side
NYC, NY

Mr. W. T. C. Schoenberg, Jr.
Travesty Lane
Culver City, Iowa

This writes the following lines in the file t e s t . srt
after t e s t . a l f is sorted:

which will transpose the original list to print the
names and addresses in alphabetic order.

The complete address list code.
\new count \namenun
\newdimen\heightofentry \heightofentry=.75in
\newdimen\widthofentry \vidthofentry=.3\hsize
\def\alphalist{\bgroup\obeylines

\global\everypar={\look))
{\obeylines
\gdef\look#l^^M#2^^M^^MI\def\test{#l)
\setboxO=\hbox{%

\expandafter\throwawayjr\test, I))
\global\namenum=O
\expandafter\takeapart\fullname

\def \endalphalist{\e~roup
\global\everypar={)
\openin1 \ j obname . srt
\ifeofl \message{<<Please sort \jobname.alf

to produce \jobname.srt >>)
\else

\immediate\closeinl
\input \jobname. srt\f i}

TUGboat, Volume 11 (1990); No. 3-Proceedings of the 1990 Annual Meeting

Where's the Greek Shift Key?

S. A. Fulling
Mathematics Department, Texas A & M University, College Station, TX 77843
409-845-2237. Internet: fullingBsarastro.tamu.edu Bitnet: saf8613Qtamstar

Abstract

Experienced typists of mathematical formulas soon tire of typing
out the names of Greek letters; they adopt short macros, such as
\za for \alpha. A standard correspondence between Greek and
Latin letters is proposed, in which phonetic resemblance is given
precedence over typographical. The resulting macros enable any
Greek letter to be typed in three keystrokes (or two, if \z is
assigned to a function key).

The title is one of the first questions I asked
when I began using rn in 1985. I couldn't believe
that one had to write out the names of the Greek
letters in mathematical formulas. Later I learned
to appreciate Tp,X's design, where control sequences
are given self-explanatory, comprehensible names.
and it is the user's responsibility to speed things
up by giving shorter names to the most frequently
used ones.

Ideally, our keyboards would have a Greek
shift key, so that holding down that key and typing
a would enter \alpha. Lacking that, we could
just \define \a as \alpha, and similarly for other
letters -except that there are already some single-
letter control sequences in p la in (e.g., \b,
\d, \H, \i, . . .). A check of The rnbook ' s index
reveals, however, that there are no two-letter control
sequences beginning with \z. Thus we can \define
\za as \alpha. and so on, enabling any Greek
letter to be typed in three keystrokes as soon as a
correspondence between Greek and Latin letters is
established.

In fact, the keystrokes can be reduced to two
if \z can be assigned to a single key. This is even
better than a shift key! One situation where this
can be done is an IBM PC or compatible running
a keyboard macro program such as SuperKey. My
solution (which will not fit everyone's typing style)
is to program the 5 key in the numeric keypad
to enter \z. (This is the only numeric key that
does not already have a cursor or editing function
assigned to it.)

All this discussion is preliminary to the main
problem: There is no well-defined correspondence
between Greek and Latin letters. Indeed, there are
26 Latin letters and only 24 Greek ones. Clearly, a
should be assigned to a and P to b, but should y be

represented by c or by g? I would choose the latter;
but then what should we do with letters like 6 and
$, which have no Latin equivalents?

Looking at the Symbol 12 type element (L'math
golf ball") of my old IBM Selectric typewriter, I
find a and P treated as expected, but then y is
assigned to q, 6 to w, 6 to r , 4 to d, and so on. I
have never taken a course in Greek, but I think that
every reasonably well educated person can see that
something is wrong here.l Let us try to construct a
correspondence that is less arbitrary.

Of course, ultimately such a correspondence is
arbitrary, in the sense that some design decisions are
necessary. My first decision has already been hinted
at: Instead of simply matching up the alphabets in
order (y H c), we should try to assign each Greek
letter to the most closely corresponding Latin letter
(y H g). With this understanding, the following
Greek letters have obvious Latin equivalents: a, P,
~ , ~ , E , ~ , L , K , / \ , ~ , V . O , ~ , T , U , ~ . This is16of
the 24.

Beyond this point, however, there is room for
controversy. There is a temptation to assign p to
p, since the letters look alike. But I prefer to give
phonetic resemblance precedence over typographical
resemblance; p is r, and p is T . For the same reason,
x represents <, not X . After all, x is nicely handled
by q, a phonetically similar and otherwise useless
letter. However, typographical resemblance takes
over for 77 (H h) and w (H w), because their closest
phonetic counterparts have already been used for E

and o.

Unfortunately, this irrational transliteration
scheme is "common in most word processing sys-
tems", according to Hoover [1989, page 557 (cf.
Figure 4)].

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 371

S. A. Fulling

Finally, it is stretching the truth only slightly
to say that there is a Latin phonetic equivalent
to 8: There was an old English letter "thorn",
which resembled a y and is still often represented
by y on the signs of small businesses with names of
the form "Ye Olde . . . ".

The only Greek letter left is 111. It is natural to
assign it to c, since both are somewhat superfluous
sibilants. The two unused Latin letters are j and v.

I have been using macros implementing this
transliteration scheme for over four years. After
submitting the abstract for this presentation, I
learned that similar systems had already been
introduced by Silvio Levy [I9881 for typesetting
Greek text, and by John Collins [1990] in a m-
compatible WYSIWYG editor for PCs. To my great
relief, their choices2 are almost identical to mine:

Latin Fulling Collins Levy

C 11, 111 [<I
j unused unused 0
v unused 0 unused
Y 0 unused 111

Clearly we are close to a consensus; let us all work
to establish one.

In addition to lower-case letters, one will define
macros for the capital Greek letters when necessary
(e.g., \zC for 9). But there are 13 capital letters
plus the lower-case omicron that are typographically
identical with Latin letters. (E.g., we do not need
\zQ for X, the capital chi.) The Latin letters thereby
freed, along with both cases of j and v and the 10
numerals, can be used with \z to define additional
macros at the user's discretion. (E.g., \zQ might be
\defined as \subseteq.) In effect, \z acts (almost)
as a second escape character. Examples are listed
below.

Listing
The foregoing discussion is summarized and imple-
mented by these macros:

%% greek.mac %%
\def\za{\alpha) % alpha -> A
\def \zb{\beta) % beta -> B
\def \zc{\psi) % psi -> C

\def\zC{\Psi)
\def\zd{\delta) % delta -> D

\def\zD{\Delta)

\def \zgI\gamma) %gamma -> G
\def\zG{\Gamma)

\def \zh{\eta) % eta -> H
\def \zi{\iota) % iota -> I
% (available for another purpose) -> J
\def \zk{\kappa) % kappa -> K
\def\zl{\lambda) % lambda -> L

\def\zL{\Lambda)
\def\zm{\mu) % mu -> M
\def \zn{\nu) % nu -> N
% (implicitly assigned to omicron) -> 0
\def \zpC\pi) % pi -> P

\def\zP{\Pi)
\def\zq{\chi) % chi -> 9
\def \zr{\rho) % rho -> R
\def\zs{\sigma) % sigma -> S

\def \zS{\Sigma)
\def \zt{\tau) % tau -> T
\def\zu{\upsilon) % upsilon -> U

\def\zU{\Upsilon)
% (available for another purpose) -> V
\def\zw{\omega) %omega - > W

\def \zW{\Omega)
\def\zx{\xi) % xi -> X

\def\zX{\Xi)
\def \zy{\theta) % theta -> Y

\def\zY{\Theta)
\def \zz{\zeta) % zeta -> Z

Examples of possible ways to fill up the table are
\def\zI{\infty) \def\zN{\emptyset)
\def \z j {\quad) \def \zJ{\qquad)
\def \zK{\subset) \def \zQC\subseteq)
\def \zo{\oplus) \def \zO{\otimes)
\def \zv{\partial) \def \zV{\nabla)
\def\zZ#l{\ifcase#l {)\or \displaystyle

\or \textstyle \or \scriptstyle
\or \scriptscriptstyle \fi)

\def\z#l#2{\ifcase#l {\overline {#2)) %\z0
\or{\if #2i {\tilde\imath)

\else\if #2j {\tilde\jmath) %\zi
\else {\tilde #2) \fi\fi)

\or{\if #2i {\hat\imath)
\else\if #2j {\hat\jmath) %\z2
\else {\hat #2) \fi\fi}

%% \or . . . % more numerals
\f i)

Bibliography

Collins, John. "ET, Version 1.05." Illinois Institute
of Technology, 1990.

Haralambous, Yannis: and Klaus Thull. "Typeset-
ting Modern Greek with 128 Character Codes."

\def\ze{\epsilon) % epsilon -> E ~ G ~ b o a t 10(3), pages 354-359, 1989.
\def\zf{\phi) % phi -> F Hoover, Anita Z. "Using Wordperfect 5.0 to Create

\def\zF{\Phi) and I4m Documents." TUGboat 10(4),
pages 549 - 559, 1989.

2 More precisely, the treatment of 0 and s Levy, Silvio. "Using Greek Fonts with m." TUG-
described here is a slight modification of Levy's, boat 9(1), pages 20 - 24, 1988.
described by Haralambous and Thull [1989].

372 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

TransFig: Portable Graphics for T@i

Micah Beck
Department of Computer Science, Cornell University, Ithaca, NY 14853
(607) 255-8597. Internet: beck@cs.cornell.edu

Alex Siege1
Department of Computer Science, Cornell University, Ithaca, NY 14853
(6071-255-1165. Internet: siegel0cs.cornell.edu

Abstract

The TransFig software package defines a portable description
language for technical graphics. Translations are provided from
this language to commonly used graphics description formats,
which can then be included in typeset documents. TransFig
includes a particularly convenient framework for including figures
in U r n . The graphics language defined by TransFig facilitates
the interchange of structured, modifiable graphics between
applications. In this paper, we review our experience with
TransFig to argue the need for a standard application level
graphics language, and suggest guidelines for its design.

Fig and TransFig

The Fig graphics editor was originally developed
by Supoj Sutanthavibul at the Universtiy of Texas.
Fig was designed to produce output in the language
of the PIC graphics preprocessor for Troff, although
it uses an editable intermediate file format which
is quite independent of the output language. This
Fig code format consists of a simple dump of Fig
internal data structures. Fig was distributed from
the University of Texas with two translators: from
Fig code to PIC and to Postscript.

TransFig. Neither of the output forms supported
by Fig allowed inclusion of Fig graphics in rn
documents in the operating environment of the
Computer Science Department at Cornell Univer-
sity. To make such inclusion possible, Micah Beck
developed a translator from Fig code to
macros [Wichura]. Frank Schmuck, also at Cornell,
developed a translator to I4w picture environ-
ment macros: the generality of this translation was
restricted by limitations of the target language.
These two translators, together with those devel-
oped at Texas, and a translation to the EPIC and
EEPIC macro packages developed by Conrad Kwok
at the University of California, Davis, were com-
bined to create a single package for Translating Fig
code [Beck].

TransFig was developed with two high level
goals:

1. to define a useful graphics intermediate form
with a clear interpretation which can be imple-
mented in any reasonably expressive graphics
language.

2. to create a framework for the convenient inclu-
sion of figures in documents with no user
customization due to the choice of graphics
language.
In order to create a widely used intermediate

form quickly, it was decided to define a standard
interpretation for the Fig intermediate format. A
reference manual was developed which defines Fig
code and its interpretion [Beck]. While this in-
terpretation was derived from the Fig editor, it is
independent of that implementation. The second
goal was addressed in the UNIX computing environ-
ment by the Transfig program which is described in
a later section.

Goals

TransFig should be evaluated in light of its specific
goals; we will therefore look more closely at what
TransFig does and does not attempt to achieve.

Expressiveness. The most important parameter
in the design of TransFig is the class of graphical
figures which is to be expressed. These figures,

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 3 73

Beck, M. & Siegel, A.

which we call technical graphics, are combinations
of graphical primitives with embedded text; bitmaps
are not included. Primitives are simple lines and
curves, with properties such as dotted or dashed
lines, shading, and arrow heads; text properties
include font and size.

Technical graphics are typically used to illus-
trate some idea or example. The content of such
figures is transmitted mainly through the shape and
labelling of primitives and their placement relative
to one another. This should be considered in con-
trast to the pixel-level precision required to produce
highly detailed or realistic images (For examples,
see Appendix A).

Restricting our interest to technical graphics
limits the possible uses for TransFig. On the other
hand, it allows us to give a less precise interpretation
to Fig code than is required for a general purpose
graphics language such as Postscript. A less exact
interpretation in turn eases the task of producing
a correct implementation using a wide variety of
output languages.

TransFig does not attempt to model the ex-
pressiveness of Postscript. its most flexible output
form. The goal of portability leads TransFig to a
level of expressiveness closer to the least common
denominator of its output forms. This has led to a
reluctance among some developers of Fig to main-
tain compatibility with the TransFig interpretation
of Fig code.

Portability. Portability of graphics is a goal which
underlies many other choices in the design of Trans-
Fig. We have mentioned portability as a limiting
factor on the precision and expressiveness of the
interpretation of Fig code; it also rules out local
or non-standard interpretations. In this context,
portability means that a document, including fig-
ures, can be moved between operating environ-
ments.

To illustrate this point, consider the specifi-
cation of bitmap patterns for area fill. It would
be possible to increase the flexibility of the area
fill specification by using a local configuration file
to map logical names of area fill types to actual
bit patterns. This would, however, also reduce the
portability of the resulting Fig code. For this reason
the list of area fill patterns defined by TransFig is
not locally extensible; the intent is for this list to
be extended at the discretion of the developers of
TransFig.

Ease of inclusion. One goal of TransFig is to allow
the user to specify the location of a figure within
a rn document with a simple command which

requires no information about the figure except
the name of the Fig code file. This means that
the rn file produced by TransFig must include
all the spacing information required for the proper
placement of graphics relative to the surrounding
text; the bounding box of the figure must be known.

The details of how to include figures described
in Fig code in a document will be discussed later.
The problem of calculating the bounding box points
up one of the main problems of the definition of Fig
code. Formatted text embedded in figures is not
handled properly by TransFig, since the bounding
box of the text is known only after it has been
formatted.

Implement at ion

The current implementation of TransFig is a com-
promise; it meets some of the above goals, and
meets others only partially. Further discussion of
the current implementation can be found in the
TransFig manual [Beck].

The Fig2dev program. All Fig code translation
programs are derived from F2p, the original pro-
gram written by Supoj Sutanthavibul to translate
Fig code to PIC. The TransFig translators were
named Fig2pic, Fig2ps, Fig2tex, Fig2latex, and
Fig2epic to differentiate them from the original
versions.

Recent releases of TransFig have combined
these five translation programs into a single program
called Fig2dev. This program consists of a common
control structure which uses a standard subroutine
interface to produce a specific output form. A
specific translation is then implemented as a set
of subroutines meeting this interface, much like an
operating system device driver.

Output languages. The translations currently
implemented by Fig2dev are from Fig code to
the following output languages:

m, a general picture environment for
which uses only native facilities [Wichura].

W r n picture environment, a restricted graphics fa-
cility that uses special fonts which are a standard
part of [Lamport].

EPIC (Extended Picture Environment), a more flex-
ible extension of I4m picture environment [Po-
dar] .

EEPIC (Extended EPIC), a generalization of EPIC

which uses an extension of m ' s DVI output
format [Kwok].

Postscript, a general graphics description language
often proposed as an industry standard [Adobe].

374 TUGboat. Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

TransFig: Portable Graphics for TEX

PIC, a graphics language designed for the Troff
typesetting program [Kernighan] .

None of these output languages can be used
to include any figure in all operating environments;
taken together they provide a translation compat-
ible with most environments. TEX has no native
graphics facility, so each output language must
strike a balance between generality and adherence
to standards.

Qm draws lines using a text character, usually
the period, as a pen. This strategy, together with
the implementation of all calculations using rn
integer registers, allows graphics to be generated
using only standard features. Formatting complex
figures. however, is slow and can require a very
large internal T)$ memory.

I P w picture environment uses special drawing
fonts which are a standard part of U r n ; however.
the class of figures which can be represented is
quite restricted; slopes of lines are restricted to a
small set, curves and area fill are not implemented
at all.

EPIC is an extension of picture environment
which can represent a broader, but still restricted,
class of figures using the same I P w drawing
fonts.

EEPIC is a reimplementation of EPIC which uses a
graphics extension of the DVI output format (tpic
specials), and therefore requires non-standard
software support.

PostScript is a very general graphics description
language which requires non-standard software
(and often hardware) support.

PIC figures require non-standard software support
to be included in TEX documents (tpic specials).

The Transfig program. The goals of generality
and portability are addressed by the Fig2dev pro-
gram; the Transfig program provides ease of graphics
inclusion, at least in the UNIX operating environ-
ment. Each figure in a document is represented by a
separate Fig code file. In order to create a printable
document, these figures must be translated to some
w-compat ib le output language, and appropriate
commands must be inserted in the TEX document.
These commands will, in general, depend on the
choice of output language. The Transfig program
hides these details from the user by automating
them.

The mechanics of including a set of figures
expressed in a given graphics language can be
divided into two parts: certain definitions required
by all figures, and a particular set of commands for
each figure. To allow the automatic generation of

the initial definitions, the user must \ input into
the document the file t ransf ig . tex , which will be
created by Transfig. For each Fig code file named
f igure . f i g , the user must input into the document
the file f igure . tex, which will also be created by
Transfig.

The Transfig program takes as arguments an
output language and the list of Fig code files. It
creates an initial file of definitions transf ig . tex ,
and it creates a Makef i l e which, when processed by
the UNIX Make facility, invokes Fig2dev to translate
each Fig code file into an appropriate '@X file.

The t rans f ig . tex file generally inputs style
or macro files specific to a given output language.
The file f igure . tex may be a large file of graphics
commands. Some output forms, notably Postscript,
require the creation of an additional file. which is
given an appropriate suffix such as f igure .ps. The
file f igure . t ex will then contain l&X commands
which make reference to the Postscript file.

TransFig compatibility. The most powerful as-
pect of TransFig is that it defines a non-proprietary
application level language for the description and
transfer of technical graphics. By application level,
we mean a language which describes graphics prim-
itives at a level high enough to be edited by users
or conveniently translated to other forms. In con-
trast, PostScript is a description level language; it
is impossible to recover the higher level primitives
from PostScript, particularly the text formatting
commands. TransFig is non-proprietary in the sense
that it is not under the exclusive control of the
developer of any particular software tool. It is based
on the Fig graphics editor, but has a definition and
interpretation of its own.

Many application level description languages
have been defined; every structured graphics editor
defines an intermediate format for storage of figures,
and ultimately translates it to a printable form.
Since such a storage format is seen only as a utility
for one graphics editor, there is generally little
attention paid to its design. The definition of the
format is encoded in the programs which use it, and
can change with every release. These proprietary
graphics formats are not useful for interchange of
graphics between applications.

Fig code is derived from the proprietary graph-
ics format of the Fig graphics editor. In fact, recent
developers of Fig have defined Postscript-oriented
extensions to the format which are not compati-
ble with the standard TransFig interpretation. To
distinguish the TransFig definition of Fig code, we
refer to it by its version identifier TFX (for TransFig

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 375

Beck, M. & Siegel, A.

extension). TFX is a language with a fixed syntax
and interpretation, albeit somewhat loosely speci-
fied. This makes it appropriate as a target language
for other graphics applications.

The most flexible version of the Fig graphics
editor currently available is Fig 1.4.FS, or Fig-
FS, which supports all TFX features. Fig-FS is
a version of Fig Version 1.4 Release 2, the last
release distributed from Texas, enhanced by Frank
Schmuck of Cornell, and runs under the SunView
windowing system.

XFig 2.0 is the most recent version of Fig
which runs under the X Windowing System. XFig
has been developed by several people; Brian Smith
of the Lawrence Berkeley Laboratory has made the
most recent improvements. XFig supports one of
two Fig code dialects for use as an intermediate
language, TFX and its own 2.0 format; the choice is
made at compile time. Fig code 2.0 is a PostScript-
oriented extension to Fig code; the PostScript driver
in recent versions of the Fig2dev program supports
both dialects.

Several programs are currently compatible with
TransFig and with one another through their use of
TFX. These include:

Gnuplot, a numerical plotting program, which can
produce output in TFX;

Pic2fig, which translates PIC into TFX;

Plot2fig, which translates the UNIX plot file format
to TFX.

TransFig is a flexible and widely used tool for
the portable exchange and inclusion of graphics.
This success has come in spite of serious shortcom-
ings which the definition of TFX has inherited from
the initial implementation of Fig. In any case. it is
worthwhile asking what the most appropriate appli-
cation level graphics format for technical graphics
in m documents would be.

Intermediate Languages

Fig code has serious shortcomings as an application
level graphics description language. These problems
include:

1. an unreadable syntax,
2. an ad hoc integration of text with graphics,
3. limited facilities for the creation and use of

composite graphics objects.
The least important problem is the syntax; it

is mainly troublesome to software developers. In
order to be easily parsed using the C language I/O
library, Fig code consists almost solely of numbers;
strings are used only to represent text objects. A

more readable syntax similar to that of PostScript
would be preferable. The other points are more
troublesome, and the first question to address is:
why not settle on PostScript as a standard graphics
language for m?
Postscript. It is commonly held that one graphics
language will suffice for all document description
needs, and that PostScript is the appropriate stan-
dard. As we have pointed out, the level at which
graphics are described in PostScript is too low to
be useful as an application level representation. The
function served by Fig code is simply different from
that served by more primitive languages.

If PostScript were accepted as the standard
graphics language for TkX, no higher level standard
would be needed to provide portability. On the
other hand, PostScript is very general and a full im-
plementation places a substantial and unnecessary
burden on users of technical graphics. A simpler
extension to the DVI format would suffice for that
purpose.

A simple interface designed to meet a specific
purpose can insulate a software system from changes
in technology. This is an important function of non-
proprietary document description languages like
Fig code or the 7&X DVI format. It is possible that
PostScript will be superceded by another popular
page description language; the TEX community
should not be tied to a single low level interface.

Note that the choice of PostScript or some other
language of equivalent power is not important for
our purposes. The complexity of technical graphics
does not change rapidly; like technical prose, figures
which convey ideas are best expressed with simple
constructs. The full flexibility of PostScript is not
required, and may in fact distract the technical
writer.

Embedded text. Ifitegrating text into graphics
turns out to be more of a problem than integrating
graphical figures into text documents. The problem
is that a graphical interpreter may not be able to
deduce what the size and shape of the text will be
after formatting. On the other hand, it is necessary
to allow formatting of text, in order to give unity to
the appearance of the text and figures, and because
technical graphics often require complex equations
to be embedded.

Because of this problem, the TransFig inter-
pretation of Fig code does not allow any embedding
of formatting commands in text objects. This strict
interpretation is, however, unacceptable to users,
and so formatting of text objects is a necessity. To
illustrate the problem posed by mixing of formatted

376 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

TransFig: Portable Graphics for QjX

and unformatted text, consider how the curly brace
character (C), which has a special significance to
T@, is handled when it appears in a text object.

When the curly brace character appears in un-
formatted text, it must be escaped with a backslash
(\{) to indicate that it is not to be interpreted
as a control character by ?(. In formatted text,
however, control characters are not escaped; the
translation program must know which type of text
is being handled.

Since Fig code does not provide a means for
making the distinction, TransFig takes a heuristic
approach: text that has either the font or size field
set to a non-default value is assumed not to include
formatting commands; a text object which has both
text properties set to the special default value is
allowed to include such commands. A better way to
deal with this problem is by differentiating between
three distinct types of text: plain, formatted, and
special.

Plain text contains no formatting commands. Parop-
erties such as font and size are specified as prop-
erties of the text object, but do not appear in
the text itself. This treatment of text is the most
common in graphics editors.

Formatted text contains simple formatting com-
mands in a language which is part of the defini-
tion of the intermediate language. An appropriate
choice might be a subset of MT@.

Special text can be expressed in any formatting
language; it is not interpreted but is passed
through to the output language unchanged. The
specific formatter used can be specified as a
property. or omitted.

The properties of plain or formatted text must
be part of the definition of the language. Further-
more, a reasonably powerful graphics editor should
be able to display formatted text. A very sophis-
ticated editor might actually invoke a formatting
program to generate output for special text. To
allow sufficient space to be left in the containing
document, however, the bounding box of special
text must be explicitly specified as a property of
the text object.

Intermediate language design goals. The de-
sign of an intermediate graphics representation is a
complex matter, with many trade-offs to consider.
We can, however, list a number of design goals for
such a language:

Fast load and store: since this language will be used
by an editor as the main form of graphics storage,
it must be very efficiently loaded from and stored
to a file.

Fast display: graphics previewers and editors must
be able to interpret the language with minimal
computational overhead.

Easy conversion to other formats: translation of this
language to other languages such as Postscript
will be very common. Unusual drawing primitives
can be a major impediment to this conversion.

Extensibility: there must be a well defined facility for
efficiently adding primitives or attributes to the
language. It must be possible to parse extensions
to the language without necessarily interpreting
the extension.

User readability: users must be able to under-
stand and edit the language. This is valuable
for software debugging and for making manual
adjustments to pictures.

Intuitive interpretation: there must be a direct
correspondence between intuitive concepts and
language constructs. Unusual constructs lead to
bugs, misunderstandings, and lengthy documen-
tation.

Density: pictures will be archived for long periods
of time in this language. The most common
constructs should be expressed with as few wasted
characters as possible. The judicious use of macros
and abreviations is very helpful in this respect.

Composition: it must be convenient to create com-
pound objects from more primitive objects, and
to manipulate these compound objects.

The most important shortcomings of Fig code
and Postscript can be understood in terms of
these goals. For example, Fig is unreadable and
not conveniently extensible; Postscript suffers from
high compuational overhead due to high language
complexity and low density due a verbose style of
punctuation.

ApGraph

Experience with Fig code has demonstrated the
usefulness of an application level graphics descrip-
tion language to the community. In spite the
shortcomings of Fig code, the use of Fig and Trans-
Fig is increasing along with the popularity of the
applications which use it. This is the appropriate
time to stop and redesign TransFig; code based on
preexisting designs and minimal resources is not a
sound basis for future development.

At Cornell, Alex Siege1 is developing ApGraph,
an intermediate language for Application Graphics,
which is intended to replace Fig code eventually.
A new graphics editor based on the X Windowing
System will support ApGraph as well as TFX, and

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 377

Beck, M. & Siegel, A.

TransFig will continue to support both. Further Acknowledgements -

development based on Fig code will, however, cease.
The development of TransFig has been made pos-

The community has much to gain by
sible by the collaboration of a group of individuals

adopting some application level graphics language
on the network too numerous to list here. The

as a standard' We hope that be an most important individual contributions were made
attractive option, as it is a simple language oriented by Frank Schmuck and Conrad Kwok. Ajei Gopal
towards the technical graphics most needed by

first introduced Micah Beck to Fig, and Alex Aiken
the l$J community. Of course, other standards

patiently tested the F ig - to -RQX translator while
are possible, including the ANSI/ISO standard

writing his thesis. A special acknowledgement goes
Computer Graphics Metafile (CGM) format. The to Supoj Sutanthavibul, whose original implemen-
best choice of language requires further study and

tation of Fig has lived on in many incarnations and
consideration.

from which all versions of Fig and TransFig are
derived.

Conclusions
We have defined a set of goals for an application Bibliography
level intermediate form for technical graphics in

documents. We have seen how the definition of
a standard interpretation for Fig code has allowed
it to serve the function of an intermediate graphics
language. The TransFig package, which implements
this standard interpretation of Fig code, is gaining
increasing popularity and acceptance in the rn
community, in spite of Fig code's serious shortcom-
ings as a graphics language. We have argued the
value to the 'l$J community of adopting a standard
language for application level description of techni-
cal graphics, and outlined some design requirements
of such a language. ApGraph is being developed as
Cornell in the hopes of influencing the definition of
such a standard.

Software Availability
Most of the software described in this article is avail-
able without charge from the archive server at Clark-
son University (Internet: sun. soe . clarkson. edu).
Access is through anonymous FTP or by mail.
Many packages, including the most recent version
of TransFig, are also avaiable for FTP from Cornell
University (Internet: svax. cs . corne l l . edu). FTP
sites for packages not available from Clarkson are
listed below. This information is subject to change.

GnuPlot is available from duke. cs .duke. edu.
Pic2fig is not available for anonymous FTP. Contact

author Micah Beck for distribution.
Plot 2fig is available from qed . r i c e . edu.
Xfig is available from expo. l c s . m i t . edu as a con-

tributed client.

Adobe Systems Incorporated. Postscript Language
Reference Manual. Reading, Mass.: Addison-Wes-
ley, 1985.

Beck, Micah. "TransFig: Portable Figures for 'l$Jjl

Cornell University Dept. of Computer Science
Technical Report #89 - 967, (February 1989)

Kernighan, B. W. "PIC-A Language for Type-
setting Graphics", Software Practice and Experi-
ence, 12(1), pp. 1-21 (January 1982)

Kwok, Conrad. "Extensions to EPIC and IPm
Picture Environment." Software documentation.
University of California, Davis, Dept. of Com-
puter Science. (July 1988)

Lamport, Leslie. D m : A Document Preparation
System. Reading, Mass.: Addison-Wesley, 1986.

Podar, Sunil. "Enhancements to the Picture En-
vironment of IP'l$J." State University of New
York at Stony Brook, Dept. of Computer Science
Technical Report #86- 17 (July 1986)

Wichura, Michael. "The Manual." Soft-
ware Documentation. The University of Chicago.
(November 1986) Second printing, by The rn
Users Group, as Wniques, Number 6, 1987.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

TransFig: Portable Graphics for

Appendix

, - - - - - - - , ' - - - - - - , r - - - - - -, r - - - - - -, r - - - - - 1

I fig I I gnuplot I I pic2fig I I plot2fig I I xapgraph I
L - - - - - J L - - - - - J L - - - - - - I L - - - - - J L - - - - - J

Fig code

J,

PiCTeX Post LaTeX (E)EPIC PIC
macros Script commands commands +

r - - - - - i
I tpic I

L - - - - - J

tpic
specials

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Beck, M. & Siegel, A.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

BASIX -An Interpreter Written in TEX

Andrew Marc Greene
MIT Project Athena, E40-342, 77 Massachusetts Avenue, Cambridge, MA 02139
617-253-7788. Internet: amgreene@mit.edu

Abstract

An interpreter for the BASIC language is developed entirely
in W . The interpreter presents techniques of scanning and
parsing that are useful in many contexts where data not
containing formatting directives are to be formatted by m.
W'S expansion rules are exploited to provide a macro that
reads in the rest of the input file as arguments and which never
stops expanding.

Introduction
It is a basic tenet of the T@ faith that rn
is Turing-equivalent and that we can write any
program in W . It is also widely held that
is "the most idiosyncratic language known to us."'
This project is an attempt to provide a simple
programming front end to W.

BASIC was selected because it is a widely used
interpreted language. It also features an infix syntax
not found in Lisp or POSTSCRIPT. This makes it a
more difficult but more general problem than either
of these others.

The speed of the BASIX interpreter is not
impressive. It is not meant to be. The purpose
of this interpreter is not to serve as the BASIC
implementation of choice. Its purpose is to display
useful paradigms of input parsing and advanced
W programming.

Interaction with

Associative arrays. Using \csnane it is possible
to implement associative arrays in 7&X. Associative
arrays are arrays whose index is not necessarily a
number. As an example, if \student has the name
of a student, we might look up the student's grade
with

which would be \grade.Greene in my case. (In
the case of \csname, all characters up to the
\endcsname are used in the command sequence
regardless of their category code.)

Ward, Stephen A. and Robert H. Halstead, Jr.,
Computation Structures, MIT Press, 1990

BASIX makes extensive use of these arrays.
Commands are begun with C; functions with F;
variables with V; program lines with /; and the
linked list of lines with L. This makes it easy for
the interpreter to look up the value of any of these
things, given the name as perceived by the user.

One benefit of \csname.. . \endcsname is that
if the resultant command sequence is undefined.
~'FJ replaces it with \relax. This allows us to
check, using \ i f x , whether the user has specified a
non-existent identifier. This trick is used in exercise
7.7 in The m b o o k . We use it in BASIX to check
for syntax errors and uninitialized variables.

Token streams. The BASX interpreter was de-
signed to be run interactively. It is called by typing
tex basix; the file ends waiting for the first line of
BASIC to be entered at W ' s * prompt. This also
allows other files to \ input basix and immediately
follow it with BASIC code.

We cannot have the scanner read an entire
line at once, since if the last line of bas ix . tex
were a macro that reads a line as a parameter,
we'd get a "File ended while scanning use of
\get l inen error. Instead, we use a method which
at first blush seems more convoluted but which is
actually simpler.

We note that TEX does not make any dis-
tinction between the tokens that make up our
interpreter and the tokens that form the BASIC
code. The BASIX interpreter is carefully constructed
so that each macro ends by calling another macro
(which may read parameters). Thus, expansion is
never completed, but the interpreter can continue
to absorb individual characters that follow it. These
characters affect the direction of the expansion; it is
this behaviour that allows us to implement a BASIC
interpreter in W .

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 381

Andrew Marc Greene

Category codes. Normally, TEX distinguishes be-
tween sixteen categories of characters. To avoid
unwanted side effects, the BASIX interpreter reas-
signs category codes of all non-letters to category
12, "other". One undocumented feature of TJ$ is
that it will never let you strand yourself without
an "active" character (which is normally the back-
slash); if you try to reassign the category of your
only active character (with, e.g., \catcode'\\=12),
it will fail silently. To allow us to use every typeable
character in BASIX, we first make \catcode31=0,
which then allows us to reassign the catcode of the
backslash without stranding ourselves. (Of course,
the BASIX interpreter provides an escape back to
TEX which restores the normal category codes.)

We also change the category code of --M, the
end-of-line character, to "active". This lets us
detect end-of-line errors that may crop up.

Semantics

Words. A word is a collection of one or more
characters that meet requirements based on the
first character. The following table describes these
rules using regular expression n ~ t a t i o n . ~ These
rules are:

First Regular
Character Expression Meaning
[A-Z, a-zl [A-Z, a-z] [A-Z, a-z ,0-9]*$? Identifier
LO-91 CO-91+ Integer

I8
V! [^Ill * [ll , -'MI String

Other Symbol

An end-of-line at the end of a string literal is
converted to a I' .

Everything in BASIX is one of these four types.
Line numbers are integer literals, and both variables
and commands are identifiers.

The \scan macro is used in BASIX to read
the next word. It uses \ f u tu re le t to look at the
next token and determine whether it should be part
of the current word; ie . , whether it matches the
regular expression of the current type. If so, then it
is read in and appended; otherwise \scan returns,

In this notation, [A-Z, a-zl means "any char-
acter falling between A and Z or between a and z ,
inclusive." An asterisk means "repeat the preceding
specification as many times as needed, or never." A
plus means "repeat the preceeding specification as
many times as needed, at least once." A question
mark means "repeat the preceeding specification
zero or one times." A dot means "any character."

leaving this next token in the input stream. The
word is returned in the macro \word.

The peculiar way \scan operates gives rise to
new problems, however. We can't say

because \scan looks at the tokens which follow
it, which in this case are \lineno=\word. We
need some way to define the goto command so
that the \scan is at the end of the macro; this
will take the next tokens from the input stream.
We therefore have \scan "return" to its caller by
breaking the caller into two parts: the first part ends
with \scan and the second part contains the code
which should follow. The second macro is stored
in \af terscan, and \scan ends with \af terscan.
As syntactic sugar, \ a f t e r has been defined as
\ le t \a f te rscan. This allows \Cgoto to be coded
as

(Actually, the goto code is slightly more compli-
cated than this; but the scanner is the important
point here.) This trick is used throughout the
BASIX interpreter to read in the next tokens from
the user's input without interrupting the expansion
of the W macros that comprise the interpreter.

Expressions. An expression is a sequence of words
that, roughly speaking, alternates between val-
ues and operators. Values fall into one of three
categories: literals, identifiers, and parenthesized
expressions. An operator is one of less-than, more-
than, equality, addition, subtraction, multiplication,
division, or reference. (Reference is an implicit op-
erator that is inserted between a function identifier
and its parameters.)

Expressions are evaluated in an approach sim-
ilar to that used in the scanner. A word is
scanned using \scan and its type is determined.
"Left-hand" values are stored for relatives, addi-
tives, multiplicatives, and references. Using W ' s
grouping operations the evaluator is reentrant, per-
mitting parenthesized expressions to be recursively
evaluated.

In order to achieve a functionality similar to
that of \ fu tu re le t , we exit the evaluator by
\expandafter\aftereval\word, where the macro
\a f te reva l is analogous to \af terscan. Since
\word will contain neither macros nor tokens whose
category codes need changing, this is as good as
\f u tu re le t .

382 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

BASIX - An Interpreter Written in

Structure of the Interpreter
The file basix.tex, which appears as an appendix
to this paper. defines all the macros that are
needed to run the interpreter. The last line of this
file is \endeval, which is usually called when the
interpreter has finished evaluating a line. In this
case, it calls \enduserl ine, which, in turn. calls
\parseline.

The \parsel ine macro is part of the Program
Parser section of the interpreter. It starts by calling
\scan to get the first word of the next line. If
\word is an integer literal. it is treated as a line
number and the rest of the input line is stored in
the appropriate variable without interpretation. If
\word is not an integer literal, it is treated as a
command.

Each command is treated with an ad hoe
routine near the bottom of basix . tex: however.
most of them call on a set of utilities that appear
earlier in the file.

Character-string calls. There is a simple library
of macros that convert between ASCII codes and
character tokens, test for string equality, take
subsections of strings, and deal with concatenation.

Debugging definitions. The macro \diw is a
debugging-mode-only \immediate\writ e l6 (hence
the name \diw). It is toggled by the user commands
debug and nodebug.

Expression evaluation. The expression evaluator
has a calling structure similar to that of the scanner.
Calling routines are split in twain, with

being a prototype of the calling convention. The
evaluator will \scan as many words as it can that
make sense; in contrast to the scanner, however,
it evaluates each instead of merely accumulating
them. This process is described above.

Linked list. The BASIX interpreter maintains a
linked list of line numbers. The macro

contains the next line number. These macros will
follow the linked list (for the l ist command); they
also can insert a new line or return the number of
the next line.

Program parser. This section contains a number
of critical routines. \eva l l ine is the macro that
does the dispatching based on the user's command.
\mandatory specifies what the next character must
be (for example, the character after the identifier

in a l e t statement must be =). \parsel ine has
already been described.

Syntactic scanner. This is the section containing
\scan and its support macros, which are described
above.

Type tests. These routines take an argument and
determine whether it is an identifier, a string
variable, a string literal, an integer literal, a macro,
or a digit. The normal way of calling these routines
is

These predicates expand into either tt (true) or t f
(false). Syntactic sugar is provided in the form of
\ i t s t r u e a n d \ i t s f a l s e . \ i fstr ing\worddoesn't
work because of the way matches \ i f and \f i
tokens - only \if-style primitives are recognized.

User Utilities. This is the section of the inter-
preter in which most of the user commands are
defined. Commands are preceded by \C (e . g . ,
\ C l i s t is the macro called when the user types
l i s t) . Functions are preceded by \F.

Limitations of this implementation
BAW is a minimal BASIC interpreter. There
are enough pieces to show how things work, but
not enough to do anything practical. Here is a
description of the capabilities of this interpreter, so
that the reader can play with it. Error recovery is
virtually non-existent, so getting the syntax right
and not calling non-existent functions is critical.

Entering programs. Lines beginning with an in-
teger literal are stored verbatim. Lines are stored in
ascending order, and if two or more lines are entered
with the same number, only the last is retained.

Immediate commands. Lines not beginning with
an integer are executed immediately. Colons are
not supported, so only one command may appear
on a line. (When a program line is executed, its line
number is stripped and the remainder is executed
as though it were an immediate command.)

Commands. The following commands are imple-
mented in some form: goto, run: l i s t , pr in t , l e t ,
i f , debug, nodebug, rem. system, ex i t , and stop
(but not cont). The interpreter is case sensitive
(although with an appropriate application of \up-
percase it needn't be: I was lazy), so these must
be entered in lowercase.

The following tables list the commands with no
parameters, the commands that take one parameter,

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 383

Andrew Marc Greene

and the two commands (l e t and i f) that take
special forms.

The commands with no parameters are:

run

stop
l i s t
debug
nodebug
rem
system
ex i t

Starts execution at the lowest line number.
Does not clear variables.
Stops execution immediately.
Lists all lines in order.
Useful information sent to terminal.
Stop debugging mode.
Rest of line is ignored.
Exit m.
Exit BASIX to m.

The commands with one parameter are:

goto Starts execution at the given line number.
l i s t Lists the given line.
pr in t Displays the given argument.

or to take source code in a given language and
pretty-print it.

The definition of a "word" can be changed
by modifying the \scan macro. It selects a def-
inition for \scantest based on the first char-
acter; scantest is what determines if a given
token matches the selected regular expression. The
\scantest macro is allowed to redefine itself.

The evaluation of expressions can be extended
or changed by modifying the \math code. Floating-
point (or even fixed-point) numbers could be dealt
with, although the period would need to pass the
\d ig i tP test in some cases and not in others.

The method of dealing with newlines is easily
removed for languages such as POSTSCRIPT or Lisp
for which all whitespace is the same.

(Any of these arguments may be an expression.) Obtaining copies of basix.tex
The l e t and i f commands take special forms.

Variable assignments require an explicit l e t com- The Source code to this Paper and the BASI~
mand: interpreter are available by anonymous ftp from

gevalt . m i t .edu. which is at IP address 18.72.1.4.
l e t (identzf ier) = (e x p ~ e s s i o n)

I will also mail out copies to anyone without ftp
Conditionals do not have an e lse clause, and goto abilities,
is not implie6 by then:

i f (expression) then (n e w c o m m a n d)

The new command is treated as its own line.

Expressions. Expressions are defined explicitly
above. The operators are +, -, *, /, <, =, and >.
Parentheses may be used for grouping. Variables
may not be referenced before being set. (Unlike in
traditional BASIC, variables are not assumed to be
0 if never referenced, and they aren't cleared when
run is encountered).

Functions are invoked with

(f unc t i on n a m e) ((p a r a m) , (p a r a m) , . . .)
The parameters are implicitly-delimited expressions
that are passed to \matheval (which is simply
called \eval in the table below to save space). The
following functions are defined:
l en(s t r ing) Returns number of characters

in the string.
chr$ (expr) Returns the character with the

given ascii value.
inc (expr) Returns \eval(expr) + 1.
min(expr1, expr2) Returns the lesser of two \evals.

Generalization

The BASIX interpreter can easily be generalized
to serve other needs. These other needs might
be to interpret Lisp or POSTSCRIPT code [Anyone
want to write a POSTSCRIPT interpreter in m?];

Summary

Using a number of TEX tricks, some more devious
than others, a BASIC interpreter can be written in
QX. While QX macros will often be less efficient
than, for example, auk paired with TEX, solutions
using only will be more portable. A less
general macro package than BASIX could be written
that uses these routines as paradigms and that is
very efficient at parsing a specific input format.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

BASIX -An Interpreter Written in

Listing of basix . t ex
1.---basix.tex begins here.
2. %
3.% BaSiX (with the emphasis on SICK!) by Andrew Marc Greene
4. %
5. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'rrL%'L%%'rrL%%%%'L%%%%'L%%%%%%
6. %
7. % Andrew's Affiliations
8. %
9. % Copyright (C) 1990 by Andrew Marc Greene

lo. % <amgreeneQmit . edu>
11. % MIT Project Athena
12. % Student Information Processing Board
13. % All rights reserved.
14. %
15. r:rr~'~'~:~:~r~'r~:~'~'~:rr~~r:rr~:r~:r~:r~'rr~:r~~~:r~:~:rrrr~;rrrr~;~;~:r~;rr~:r~
16. %
17. % BaSiX's Beginnings
18. %
19. \def \f lageol~\catcode13=13}
20.\def\endflageol{\catcode13=5)
21. \def\struncat{\catcode1\$=12)
22. \def\strcat{\catcodel\$=ll}
23. \f lageol\let\eol
24. \endf lageol
25. \newif \ifresult
26. %\newcount \xa\neucount \xb
27. \def \iw(\immediate\uritel6}
28. \def \empty{)
29. \def \gobble#l{)
30. \def \spc{)
31. \def\itstrue{tt}
32. \def \itsf alse{tf)
33. \def \isnull#l{\resultf alse
34.\expandafter\ifx\csname ernpty#l\endcsname\empty\resulttrue\fi}
35. \newcount \matha\newcount\mathb
36. %
37. %'l.%%%%%%%%%'A'rrL;/,%%%%%%%%%%%%%'L%'L%%%'L%%%%%%%%%%%%'L%'L%
38. %
39.X Character-string Calls
40. %
41. \newcount\strtmp
42.\def\ascii#1{\strtmp1#1)
43.\def\chr#1{\begingroup\uccode65=#l\uppercaseC\gdef\tmp{A)}\endgroup}
44. \def\strlen#l{\strtmp-2% don't count " " \iu tokens
45. \expandafter\if \stringP #l\let\next\strIter\strIter #l\iw\f i)
46. \def \strIter#l{\if x\iw#l\let\next\relax\else\advance\strtmp by l\relax
47. \f i\next}
48.\def\Flen{\expandafter\strlen\expandafter{\Pa}\retun{\nmber\strtmp}}
49. \strcat
50. \def \Fchr{\expandaf ter\chr\expandafter{\Pa}\return{\tmp}}
51. \struncat
52. % first char only:
53. % \def \Fasc{\expandafter\asc\expandaf ter(\))
54. %
55. %%%%%'crrL%%%%%%%%%%'rrL%'L%%%%'rrX'L%'rrrL%%%%%'rrL%'L%%'L%'L%%'rL%
56. %
57. % Debugging Definitions
58. %

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Andrew Marc Greene

64. %%%%%%%%%%%%%%%%'A%%'A%%%%%%'/A%%'~A%%#%%'L
65. %
66. % Expression Evaluation
67. %
68. \def\expression{\let\afterexpression\afterscan\math)
69. %
70.% (math is a misnomer and should -> expr)
71. %
72. \newcount\parens\newcount\mathParams
73. \def \math{\parens=O\mathParams96\mathInit\matheval)
74.\def\mathRecurse{\advance\parens by l\relax\mathParams96\mathInit\matheval)
75. \def \mathInit{\begingroup
76. \let\mathAcc\empty
77. \let\mathOpRel\empty
78. \let\mathOpAdd\empty
79. \let \mathOpMul\empty
80. \let\mathlhFlef \empty)
81. %
82. \def \matheval{\af ter\mathbranch\scan)
83. %
84.+def\mathbranch{\diw{EXPRESS:\expandafter\noexpand\word:)
85. \let \next \matherr
86.\ifx\empty\uord\let\next\mathHardEnd\else % Expr. end?
87.\expandafter\if\numberP\uord\let\next\matiteral\diw)\fi '/, Number?
88.\expandafter\if\stringP\word\let\next\mathLiteral\fi String literal?
89.\expandafter\if\identifierP\word\let\next\mathIdentifier\fi % Identifier?
90.\expandafter\if\stringvarP\word\let\next\mathIdentifier\fi % :-(
9~.\expandafter\if\macroP\word\let\next\mathMacro\fi % Macro?
9~.\ifx\word\0left\let\next\mat~ecurse\fi % Open paren?
93.\ifx\word\0right\let\next\mathEndRecurse\fi % Close paren?
94.\ifx\uord\0comma\let\next\mathComma\fi % Comma?
95. %
96. % Operator?
97. %
98. \if x\word\Oplus\let\next\math0p\diu{ ! +>\f i
99.\ifx\word\Ominus\let\next\mathOp\diu{!-)\fi

loo.\ifx\word\Otimes\let\next\mathOp\diu{!*)\fi
lOl.\ifx\uord\Odiv\let\next\math0p\diw{!/)\fi
lO2.\ifx\word\Olt\let\next\mathOp\diw{!<)\fi
l03.\ifx\word\Oeq\let\next\math0p\did!=)\fi
l04.\ifx\word\Ogt\let\next\math0p\div(!>)\fi
105. %
106. \f i\next)
107. %
108. \def\Oleft{()\def \Oright{))\def \Ocomrna{,)
109.\def\~plus{+)\def\~minusC-)\def\0timesC+)\def\~div{/~
110. \def \Olt{<)\def \OeqC=)\def \Ogt{>)
111. %
112.% There's got to be a better way to do the above
113. %
114.\def\math~iteral{\diw{MLIT)\ifx\empty\mathAcc\diw{AC~~:\word:)
115. \expandafter\def \expandafter\mathAcc\expandafter
116.~\expandafter\expandafter\expandafter\empty\word)
117. \else
118.\diw{ACC has :\mathAcc: and word is :\word:)
119.\errmessage{Syntax Error: Two values with no operator)\fi\matheval)
120. %
121.% Operator stuff: (Need to add string support / error checking)
122. %
123. \def \mathAdd{\advance\matha by \mathb)
124. \def \mathSub{\advance\matha by -\mathb)
125. \def\mathM~l(\multiply\matha by \mathb)
126. \def \matMiv{\divide\matha by \mathb)
127. \def\mathEQ{\ifnum\matha=\mathb\matha-l\else\mathaO\fi)

386 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

BASIX-An Interpreter Written in TEX

128. \def \mathGT{\ifnum\matha>\mathb\matha-1\else\mathaO\f i)
129. \def\mathLT{\ifnum\matha<\mathb\matha-l\else\mathaO\fi)
130. %
131. \def \mathFlushRel{\mathFlushAdd\if x\empty\mathOpRel\else
132. \matha=\mathlhRel\relax\mathb=\mathAcc\relax\math0pRel
133. \edef\mathAcc{\number\matha~\let\mathOpRel\empty\fi)
134. %
135. \def\mathFlushAdd{\mathFlushMul\ifx\empty\math0pAdd\else
136. \matha=\mathlhAdd\relax\mathb=\mathAcc\relax\math0pAdd
137. \edef \mathAcc{\number\matha)\let\mathOpAdd\empty\f 1)
138. %
139.\def\mathFlushMul{\mathFlushRef\ifx\empty\math~pMu1\e1se
140. \matha=\mathlhMul\relax\mathb=\mathAcc\relax\mathOpMul
141. \edef\mathAcc~\number\matha~\let\math0pMul\empty\fi)
142. %
143. \def\mathFlushRef{\ifx\empty\mathlhRef\else
144. \mathParam
145. \mathlhRef \let\mathlhRef \empty\f i)
146. %
147. \def \mathop{%
148. \if \word+
149. \mathFlushAdd\let\mathlhAdd\mathAcc\let\mathOpAdd\mathAdd\fi
150. \if \word-
151. \mathFlushAdd\let\mathlhAdd\mathAcc\let\mathOpAdd\mathSub\fi
152. \if \word*
153. \mathFlushM~l\let\mathlhMul\mathAcc\let\mathOpMul\mathMul\fi
154. \if \word/
155. \mathFlu~hM~l\let\mathlhMul\mathAcc\let\mathOpMul\mathDiv\fi
156. \if \word=
157. \mathFlu~hRel\let\mathlhRel\mathAcc\let\mathOpRel\mathE~\f i
158. \if \word>
159. \mathFlushRel\let\mathlhRel\mathAcc\let \mathOpRel\mathGT\f i
160. \if \word<
161. \mathFlushRel\let\mathlhRel\mathAcc\let\mathOpRel\mathLT\fi
162. \let\mathAcc\empty
163. \matheval)
164. %
165. \def \mathIdentif ier{%
166.\expandafter\ifx\csname C\word\endcsname\relax
167. \expandaf ter\if x\csname F\word\endcsname\relax
168.\expandafter\ifx\csname V\word\endcsname\relax
169. \let\next\matherr\diw{LOSING:\word:)
170. \else\let\next\mathVariable\f i
171. \else\let\next\mathFunction\f i
172. \else\let\next\mathCornmand\f i\next)
173. %
174.\def\mathVariable{\expandafter\edef\expandafter\word\expandafter
175. {\csname V\word\endcsname)\mathbranch)
176. \def \mathCommand{\expandaf ter\mathHardEnd\word)
177.\def\mathFunction{\expandafter\let\expand~ter\mathlhRef
178. \csname F\word\endcsname\matheval)
179. %
180. \def \mathParam{\advance\mathParams by l\relax\chr\mathParams
181. \diw{PARAM: \tmp: \mathAcc :)
182. \expandaf ter\edef \csname P\tmp\endcsname{\mathAcc))
183.\def\mathComma{\math~nd\mathParam\mathInit\matheva1)
184. \def\mathEndRecurse{\mathEnd\advance\parens by -l\matheval)
185. \def\mathEnd{\diw{MATHEND: ACC=\mathAcc:)\mathFlushRel
186. \xdef\mathtemp{\mathAcc)\endgroup\edef\mathAcc{\mathtemp))
187. \def \mathHardEnd{\ifnum\parens>O\errmessage{Insuf f i c e closeparens.)\relax
188. \let\next\endeval\else\let\next\mathFinal\fi\next)
189. \def\mathFinal{\mathEnd\let\value\mathAcc\endexpression)
190.\def\matherr{\errmessage~tax error: Unknown symbol \word))
191.\def\endexpression{\afterexpression)

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Andrew Marc Greene

192. %
193. % ' ~ % % ' ~ % % r ~ ~ ~ % ' ~ % % % ' ~ X ' ~ ~ % ' X ' ~ % ' X ' ~ % % ' ~ ~ ~ ~ % % ' X ' X ' ~ ~ % ' ~ ~ ~ % ' X ' X ' ~ ~ ~ ~ X ' ~ ~ % % % ' ~ ~ %
194. %
195. % Linked List
196. %
197.\def\gotofirstline{\edef\lpointer{\csname LO\endcsname)}
198.\def\foreachline#1{\ifnum\lpointer~99999\edef\word{\lpointer)#~%
199.\edef\lpointer{\csname L\word\endcsname)\foreachline{#l)\fi)
200. %
20l.% gotopast{#l) where #1 is a line number, will set \lpointer to
202. % the least value such that L(lpointer)>#l
203. %
204. \def \gotopast#i{\def \lpointer{O)\def \target{#l)\gotopastloop)
205. %
206. \def \gotopastloop{\edef \tmp{\csname L\lpointer\endcsname)%
207. \ifnum\tmp<\target%
208.\edef\lpointer{\csname L\lpointer\endcsname)%
209.\~et\next=\gotopastloop\else\let\next=\relax\fi
210. \next)
211. %
212. \flageol\def\addLineToLinkedList#l#2
213. {\def#i{#2)\diw{Just stored #2 in \noexpand #I)%
214. % now put it into linked list. . .
215.\expandafter\ifx\csname L\uord\endcsname\relax% if it isn't already there,
216.\gotopast{\word)% \def\lpointer{what-should-point-to-word)
217. \expandafter\edef \csname L\word\endcsname{\csname L\lpointer\endcsname)%
218. \expandaf ter\edef \csname L\lpointer\endcsname{\uord)%
219. \f i\endeval
220.)\endf lageol
221.\expandafter\def\csname LO\endcsname{99999)
222. %
223. %X%%'lh%%'lA%%#%%%%%%'A%%%X%%%%%
224. ;!
225. % Program Parser
226. %
227.\def\evalline{%\iw{EVALLINE :\word:)%
228. \csname C\uord\endcsname) %error-checking? :-)
229. \def\evalerrorC\errmessage{Unkonwn command. Sorry.))
230. %
231. % \mandatory takes one argument and checks to see if the next
232.X non-whitespace token matches it. If not, an error is generated.
233. %
234. \def \mandatory#l{\def \tmp{#l)\mandatest)
235.\def\mandatest#i{\def\tmpp{#i)\ifx\tmp\tmpp\~et\next\afterscan\e~se
236. \let\next\manderror\f i\next)
237.\def\manderror(\errmessage{\tmpp\spc read when \tmp\spc expected.)%
238. \af terscan)
239. %
240.X \parseline gets the first WORD of the next line. If it's a line
241.X number, \scanandstoreline is called; otherwise the line is executed.
242. %
243. \def \parseline{\after\f irsttest\scan)
244. \def \f irsttest{\expandaf ter\if \numberP\word
245. \let\next\grabandstoreline\else\let\next\evalline\fi\next)
246. \def\grabandstorelineC\diw{Grabbing line \word.)%
247.\expandafter\addLineToLinkedList\csname/\word\endcsname}
248. %
249. %%%%;l,#%%%'l/lA%'llA%%%'lA%'A%%'A%'A%%'A%%%%%'lA%'h%'A%'llA%%%%%%'A%%%
250. %
251. % Syntactic Scanner
252. %
253.X The \scan routine reads the next WORD and then calls \afterscan.
254. ;!
255. % As syntactic sugar, one can write \after\foo to set \afterscan to

388 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

BASIX - An Interpreter Written in

256. % \f00.
257. %
258.1 Here are the rules governing WORD. Initial whitespace is
259.X discarded. The word is the next single character, unless that
260. % character is one of the following:
261. %
262. % A-Z or a-z : [A-Z, a-z] [A-Z , a-z ,0-a*\$?
263. % 0-9: [O-9]+
264. % " : $1 [-,,I * t ,

265. % <,=,>: [<=>I [<=>I? (one or two; not the same if two)
266. %
267. % Note that the string literal ignores spaces but may be abnormally
268. % terminated by an end-of-line. (I wasn't sure how to express that
269. % as a regexp) .
270. %
271. %
272. \newif \if scan j: shall we continue scanning?
273. %
274.\def\scan{\def\~ord()\futurelet\~\scanFirst~
275. %
276.\def\scanFirstC% Checks the first character to determine type.
277. \let\next\scanIter
278. \expandafter\if \spc\noexpand\q % Space -- ignore it
279. \let\next\scanSpace\else
280. \if \eol\noexpand\q % End of line -- no word here
281. \let\next\scanEnd\else
282. \if cat A\noexpand\q % Then we have an identifier
283. \let\scanTest\scanIdentifier\else
284. \expandaf ter\if \digit\q
285. \let\scanTest\scanNumericConstant\else
286. \if It\noexpand\q
287. \let\scanTest\scanStringConstant\else
288. \expandaf ter\if \relationP\q
289. \let\scanTest\scanRelation
290. \else
291. \let\scanTest\scanf alse
292. \f i\f i\f i\f i\f i\f i\next}
293. %
294.\def\scanIter#~{\expandafter\def\expandafter\word\expdafter\word #I}
295. \futurelet\q\scanContinuePl
296. \def\scanContinueP{\scanTest\ifscan\let\next\scanIter
297. \else\let\next\scanEnd\fi\next}
298. %
299.\def\scanSpace#l{\scan)% If the first char is a space, gobble it and try again.
300. \def \scanIdentif ierf\if cat A\noexpand\q\scantrue\else
301. \expandafter\if \digit\q\scantrue
302. \else\if $\noexpand\q\scantrue
303. \expandaf ter\def \expandaf ter\word\expandaf ter{\expandaf ter$\word}
304. \let\scanTest\scanf alse\else
305. \scanf alse\f i\f i\f i)
306. \def \scanEndStringf\scanf alse}
307.\def\scdumericConstantI\expandafter\if\digit\q\scantrue\e~se\scanfa~se\fi~
308.\def\scanStringConstant{\scantrue\if"\q\let\scanTest\scanfalse\fi~
309.\def\sc~elation{\if<\q\scantrue\else\if>\q\scantrue\else\if=\q\scantrue
310. \else\scanf alse\f i\f i\f i}
311. %
3 1 2 . \ d e f \ ~ ~ ~ n d # 1 { \ ~ e l a ~ \ d i ~ { S c A N N E D : \ W 0 r d : }
313. \af terscan #I}% dumps trailing spaces.
314. \def \af ter{\let\af terscafl
315. %
316. %#%%%X%%X%%%%%rA%'A%%%'A%%'b%'A%%'/A%'A%%%%%%%%rk%%r/A%%'L%%'A%%%'/A
317. %
318. % Type Tests (Predicates for type determination)
319. %

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Andrew Marc Greene

32o.\def\relationP#l{tf) % for now, only single-char relations
321. \def \identif ierP#l{\expandaf ter\ident;if ierTest #I\\)
322,\def\identifierTest#l#2\\{\ifcat A#l\itstrue\else\itsfalse\fi)
323. \def \stringvarP#l{\expandaf ter\stringvarTest #I\\)
324.\def\stringvarTest#l#2\\C\if$#l\itstrue\e~se\itsfa1se\fi)
325. \def \stringP#l{\expandafter\stringTest #I\\)
326.\def\stringTest#l#2\\i\if #l"\itstrue\else\itsfalse\fi)
327.\def\numberP#l{\expandafter\numberTest #I\\)
328.\def\numberTest#l#2\\{\expandafter\if\digit #l\itstrue\else\itsfalse\fi)
329. \def \macroP#l{\expandaf ter\macroTest #I\\)
33O.\def\macroTest#~#2\\{\expandafter\ifx #l\relax\itstrue\else\itsfalse\fi)
331. %
332. % \digit tests its single-token argument and returns tt if true,
333. % tf otherwise.
334. %
335. %
336. \def \digit#1{%
337. \if O\noexpand#l\itstrue\else
338. \if l\noexpand#l\itstrue\else
339. \if 2\noexpand#l\itstrue\else
340. \if 3\noexpand#l\it strue\else
341 \if4\noexpand#l\itstrue\else
342. \if 5\noexpand#l\itstrue\else
343. \if 6\noexpand#l\itstrue\else
344. \if 7\noexpand#l\itstrue\else
345. \if 8\noexpand#l\itstrue\else
346.\if9\noexpand#l\itstrue\else\itsfalse
3 4 7 . \ f i \ f i \ f i \ f i \ f i \ f i \ f i \ f i \ f i \ f i
348.%9 8 7 6 5 4 3 2 1 0
349.)
350. %
351. %'l/;/:l/;ll~lA'/;/;/l/;//:/l/1(~ll/;/;/;l~A'/;/:l/;l//;/:/;l/;/~~~ll/;A'l/:~//:/;lll/;~l/:l/;/;/e
352. %
353. % User Utilities. These are the commands that are called by the
354.X user. We could really use a better section name. :-I
355. %
356 % List (one line or all lines, for now)
357. %
358. \def \Clist{\af ter\listmain\scad
359 \def\listmain{\isnul1I\word~\ifresult\let\next\listalllines
360.\else\let\next\listoneline\fi\next)
361. \def\listline{\iw{\word\spc\csname/\word\endcsname)~
362.\def\listall~ines{\gotofirstline\foreach~ine{\~ist~ine)\endeva~)
363. \def\listoneline{\listline\endeval)
364. %
365. %%%%%%%'lA%%%%%%%'A%'lA%%%'A%%'lA'A%%'lA%'A%%%%%%%'A%%%'/A%'/A%%'A%'L%%%'/llA%%%%
366. %
367.X Different degrees of "stop execution"
368. %
369. \def \Csystem{\end) % exits to the system
370.\def\Cexit{)% \endflageol) % exits to TeX
371. \f lageoS/,
372. \def \Cstop#l
373. {\iu{Stopped in \lineno.)\cleanstop)%
374.\def\cleanstop{\diw~LEANSTOP)\let\endeva1\enduser1ine\endeva1
375.)\endf lageol
376. %
377. %'lA%%%%%%X%X%%%%%%%%'lA%'A%%%'A%%'A%%'A%%'A%%'tA%'tA%%'lA%%%%%'A%'A%%'A%'A%%'A%'lA
378. %
379. % The command "rem" introduces a remark
380. %
381. \def \Crem{\endeval)%
382. %
383. %' l~%%%%'A'~A%%'h ' tA%'~%%'A%%%' l~X 'A%%%%' l~%'~~%%'A%' t lA%'~ lA%%%%'A%%' l~%' lA%%'~%%' t~A

390 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

BASIX - An Interpreter Written in T@

384. %
385.X The "let" command allows variable assignments
386. %
387. \def\Clet{\after\letgetequals\scan)
388. \def\letgetequals{\after\letgetvalue\mandatory{=))
389. \def \letgetvalue{\after\letdoit\expression)
390. \def \letdoit{\expandaf ter\edef \csname V\word\endcsname{\value)%
391. \endeval)
392. %
393. %'h'A'lllr/:A'/:ll/:lll/:lA'rl/:/:l/:lA'/:lh'll/:rlr/;l/:/:/I%'/:lr/;A'/:/:l/:ltlr/:A'A'l/:/:l/:l/:l/,
394. %
395 % The "print" command takes a [list of] expression[s] and displays
396 % it [them].
397. %
398. \def\Cprint{\after\printit\expression)
399.\def\printit{\iw{\value}\endeval)
400. %
401. %X%%%%%%%'A%%X%%;I,%%%%%%%%%%%%%%'A%'cA%%
402. %
403. % The "if " command takes an expression, the word "then," and
404. % another command. If the expression is non-zero, the command is
405.% executed; otherwise it is ignored.
406. %
407.\def\Cif{\after\getift\expression)
408.\def\Cthen{\errmessage{Syntax error: THEN without IF))
409. \def \getif t{\after\getifh\mandatory t)
410. \def \getifhi\after\getif e\mandatory h)
411. \def\getife{\after\getifn\mandatory e)
412. \def\getifn{\after\consequent\mandatory n)
413. \def \consequent{\ifnum\value=0\let\next=\endeval\else\let\next=\evalconsq\f i
414. \next)
415. \def\evalconsq~\after\evall ine\sca~
416. %
417. %%%%%%X%%%;/,%%%%%'rX'A%'/A%%'A%%%%%%'A%%-lA%%%%%%'/A%'A%
418. %
419. % Functions
420. %
421.% Functions may read the counter \mathparams to find out the number
422. % of the top parameter. Parameters are in Pa Pb PC etc.
423. %
424.\def\return{\expandafter\def\expandafter\mathAcc\expandafter)
425. %
426. \def \Finc{\matha=\Pa \advance\matha by 1
427. \return{\{\mnumber\matha))
428. %
429. \def\Fmin{\ifnum\Pa<\Pb\return{\Pa}\else\return{\Pb)\fi)
430. %
431. %%%%'lA%%X%;/,%%%%%j/,%%%'A'A%%%%%%%%%%%%'!I%%%%'A%%%'A%%'h%%%%%%%%%%%%
432. %
433. % Program execution control
434. %
435.\def\Crun~\let\endeval\endincrline\def\linen0{0)\endeva1)
436. \def\Cgoto{\let\endeval\endgotoline\after\gotomain\scan)
437. \def \gotomain{\edef \lineno{\word)\endeval)
438. %
439. \f lageol%
440. \def\execline~%\message~Executing line \lineno...)%
441. \edef\theline{\csname/\lineno\endcsname)%
442. %\message{THE LINE\theline)%
443. \let\endeval\endincrline\after\evalline\expandaf ter\scan\theline
444.)\endf lageol
445. %
446. % Different varieties of what to do at the end of a command:
447. %

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Andrew Marc Greene

448. % get new line from user (enduserline)
449.X get next line in order (endincrline)
450. % get line in \lineno (endgotoline)
451. % keep parsing current line (endcolonline tbi)
452. %
453. \f lageol%
454. \def \endincrline#l
455. {\diw{ENDINCRLINE)\edef \lineno{\csname L\lineno\endcsname)\execnextline~
456. %
457. \def \endgotoline#l
458. {\diw{ENDGOTOLINE)\1et\endeval\execincrline\execnextline)%
459. %
460. \def\execnextline(\diw(Ready to execute line \lineno...)%
461. \ i fnum\~ineno<99999\~et\next\exec~ine\e~se\~et\next\c~e~stop\f i \next~%
462. %
463. \def \enduserline #1
464. {\diw{ENDUSERLINE)\parseline)\endf lageol
465. %
466. \let\endeval\enduserline
467. %
468. %'A%%%%%%%%%%%%%'/A%'l/A%%%%%%%%%%'/A%'rA%%%'h%%'/A%'rX'A%%'r/rA%%%'rA%%%'A%
469. %
470. % Start your engines!
471. %
472.\iw{This is BaSiX, v0.3, emphasis on the SICK! by amgreeneQmit.edu)
473. \f lageol
474. \catcode32=12
475. \endeval
476.
477.---basix.tex ends here. The blank line at the end is significant.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

A Noddy's Guide to using TEX
for Text Production:
From Manuscript to Bromide

Helen Gibson
Wellcome Institute for the History of Medicine 183 Euston Road, London NW1 2YN, England
Internet: gibson~euclid.ucl.ac.ukQnss.cs.ucl.ac.uk

Abstract

The purpose of this paper is to give a practical example of a PC

system setup for obtaining high quality typeset output. A brief
discussion of the Wellcome Institute's publication requirements
will be followed by detailed explanations of the hardware and
software configurations, how to output to Postscript and the
utilisation of electronic communications for sending laser printer
proofed text to a Linotronic 300 phototypesetter. The value
of employing Wordperfect macros, alternative keyboard layouts
and style files as an interface for secretarial inputting is also
demonstrated.

Introduction
Many non-UK residents may wonder who or what
is Noddy. He is a children's storybook character,
a doll, created by children's author Enid Blyton.
Basically he's young and cute, but pretty nai've.
He gets himself into all sorts of sticky situations
from which he is invariably extricated by his older,
wiser companion, Big Ears. In England the term
"a Noddy's guide" is synonymous with "basic",
thus this paper is aimed at people who are new to
electronic publishing and m. We are all Noddys
at some stage. Some of us get to be Big Ears.

In this paper I use m as a generic term,
taking IPm under its umbrella.

Background Information
The Wellcome Institute for the History of Medicine
exists to provide library resources and research and
teaching facilities for all persons with serious in-
terests in the history of medicine and the allied
sciences. It collects, maintains and makes avail-
able materials in the history of medicine from all
cultures and from all periods ranging from prim-
itive man to the present day. Its collections of
books, manuscripts, periodicals, paintings, prints
and photographs total upwards of 850,000 items.
Its teaching and academic staff, its librarians and
associated Research Fellows explore and dissemi-
nate the wealth of its collections to the world-wide
academic community through lectures, seminars,

symposia and publications. It is because of this
requirement to communicate through publications
that TEX has become a useful tool to the Institute.

T@ Arrives
It was almost by accident that Tm found its
way into the Institute through the auspices of Dr
Dominik Wujastyk, the Associate Curator for the
Oriental collection. In this tale he is Big Ears
to my Noddy. In February 1986, attracted by
an article on processing strings in SNOBOL~, he
bought an issue of BYTE magazine. His attention
was soon grabbed, however, by an article from
the pen of Pierre MacKay of the University of
Washington entitled Typesetting Problem Scripts.
Dominik's interest in string processing in S N O B O L ~

was not prompted by idle curiosity, but stemmed
from the fact that he definitely has problem scripts
to typeset in providing a descriptive catalogue of the
South Asian collections of the Wellcome Institute.
In 1985 he had published the first volume of a
Handlist of Sanskrit and Prakrit Manuscripts, of
which there are over 6000. The text included many
Latin transliterations of the original Devansgari
script used in Hindi and Sanskrit which includes
numerous diacritical marks (Figure 1, Appendix).

Having despaired of the nightmare task of
proofing externally typeset galleys. Dominik was
attempting to manipulate the IBM Displaywriter
and daisywheel printer technology available at the

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 393

Helen Gibson

Institute at that time. In his efforts to overcome
the compromises imposed on non-Latin letters by
the limitations of the IBM extended character set,
he had obtained a customised daisywheel. As the
amount of inputting was far too great to tackle
without secretarial help, he devised a system for
the secretary to type, for example, d\$ which would
then be mapped to the d position on the daisywheel.
As you have seen, the results were not ideal, but
they were published.

Pierre MacKay's paper promoted T)$ as the
solution to the typesetting of problem text. Not
only were the facilities for dealing with diacriticals
available, but Pierre also held out the promise
of being able to typeset Devaniigari script. This
was like manna from heaven to Dominik, who
subsequently lobbied for the purchase of a couple
of IBM PCs, a Toshiba PI340 dot matrix printer,
for which there was a TEX driver, and a copy of
PC m. I'm not sure that there can be many
examples of w being the cause of an Institute
becoming computerised, but this could be cited as
one of them.

The pcs, however, could not be solely dedicated
m. They were there for Institute work in general.
Their arrival coincided with the commencement
of two major projects which it was proposed to
computerzse. Senior staff at the Institute were
also realising the benefits of their work being
word-processed as opposed to typewritten. It was
decided to expand the computing provision in the
Institute, and at the same time it was recognised
that a professzonal computing person was required
to oversee those changes. This is where I came on
the scene in September 1986, fresh from the business
information systems world of DBASE, LOTUS and,
thankfully, DISPLAY WRITE^ (D W ~) . SO. you could
say in some roundabout way. that I have 7$-X to
thank(!) for my present job.

I t may appear ungrateful but I have to admit
that my priorities were not centred on w . I
was evaluating the overall PC requirements of the
Institute as far as text and data processing were
concerned, and dealing with the anxieties of sec-
retaries who viewed the new technology with the
suspicion and fear of the over-worked.

Initially, D W ~ was chosen as the PC word
processing package primarily because of its rela-
tionship to the DisplayWriters, which we expected
would facilitate the translation of existing docu-
ments and ease the learning curve. The arrival
of the PCS and faster printers speeded up the
word processing output and consequently created a
greater demand. The DisplayWriters and associated

daisywheel printers were deemed obsolete and were
replaced. The Toshiba's print quality was inade-
quate for the Institute's requirements, therefore IBM

Quietwriters were chosen. The secretaries, to their
relief, were able to dispense with their ear-plugs. So
far nothing but improvements in conditions.

Top priority was to take the load off the two
secretaries who were carrying the bulk of the word
processing load by persuading the primary produc-
ers of text, the academics, that it would be a good
thing for them to have one of these dreaded things
on their desks. Document production would be
more direct and editing less onerous. Secretaries
of long standing had to be weaned off their type-
writers. Not only that. but we were introducing
databases as well. You can imagine the learning
curves and conceptual mysteries we were struggling
with. And then, to top it all, there was m.

In the midst of all the hardware and software
changes, Dominik was enthusiastically pursuing
with some splendid results. Fellow academics saw,
admired and desired the same effects, but were
unwilling or unable to invest the corresponding
time and effort in their achievement. The burden
then fell on the secretaries. You could say that
we could have ignored the demand, but if a system
is there to allow an academic to publish a work
which would be prohibitively expensive by any
other means. then it should be made available.
With hind-sight though, in our enthusiasm, we did
jump in at the deep end. However, we learnt many
lessons which I hope this account may help you to
avoid.

Our first 7&X task outside of Dominik's do-
main was a book for our Arabist, Dr Lawrence
Conrad, to commemorate the work of a recently
deceased colleague. There was a tight dead-line
for its publication, and w ' s ability to deal with
diacritical markings promised Dr Conrad release
from the typesetter/proofing ordeal.

Lesson number one - the obvious - do not
start with anything longer than a couple of pages.
Having said that though, Donald Knuth does de-
scribe w as "a new typesetting system intended
for the creation of beautiful books" [The W b o o k ,
Preface].

Lesson number two- a must -get your au-
thors to proof and edit the content of their text
before w i n g . Unfortunately, because of the nature
of the book's content and a need to prove that
could do the job, this was a lesson we learnt the
hard way. There is nothing more guaranteed to
drive a secretary to the brink of insanity than hav-
ing to alter her slaved over text and re-sit through

394 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

From Manuscript to Bromide

all that interminable TEX processing and printing
procedure, which is not even in background mode!
Our secretaries did a valiant job, with the end result
being a superb 599 page book The Formation and
Perception of the Modern Arab World: Studies by
Marwan R. Buheiry, complete with 49 plates. This
book sells for $24. Dr Conrad informs me that if
the book had been produced in the conventional
manner it could not have sold for less than $90.
I mention this to encourage perseverance. It does
pay off.

Lesson number three-if you are an applica-
tions developer. get your act together and provide
an efficient system in order to prevent your sec-
retaries deserting in droves. This is not a trivial
point. In a city such as London, secretarial jobs are
plentiful and well-paid.

To introduce w effectively into your organ-
isation, it has to be accepted that it is not for
the masses to learn. Conceptually, it is likely
to be different from any other text processing
package a secretary has come across. I think of
TEX as a programming language embedded in the
text, commanding the layout and design of the
whole document. Often, complex nested macros
are required to create the ultimate design. The
first processing run is synonymous with de-bugging.
This task is easier for a highly motivated person.
with programming skills. Ideally, there should be
someone employed with specific responsibility for

development. In a circumstance where we were
required to respond to an urgent demand I was
fortunate in that Dominik was there to design the
macros and style files. This is where the hard work
lies.

The hardware and software chosen for our
bulk text processing had to have some coherence
with m, or be able to be manipulated to be
so, without isolating a TEX system from the main
stream of the Institute's requirements. Our word
processing package had to change. D W ~ was really
cumbersome. Text had to be converted to ASCII

format before it could be processed by m. Often
the conversion was problematic. EBCDIC control
characters would be retained, grinding processing
to a halt and taking an age to find. Fortunately,
several major developments in the outside world
helped to advance the integration of the cause.
We were progressing into the age of the laser printer
and the secretaries were keen to take advantage of
this fast, quiet technology. IBM was notoriously bad
at providing drivers for non-IBM printers. For a
short time we used PC-WRITE to overcome these
problems particularly for the book inputting, but it

did mean an added learning burden all round. The
change had to be to a mainstream package which
would provide the secretaries with a marketable
skill and ourselves with a ready supply of able
operators. The choice came down to two packages,
WordPerfect and Microsoft Word, both of which
were becoming industry standards. I chose the
former because. as well as being a powerful package,
it was much easier to learn than Microsoft Word,
and WordPerfect Corporation provided excellent
telephone technical support. There is an advantage
in choosing industry standards in that everyone
writes for them. You will never be stranded out on
a limb.

The same can be said for choosing hardware.
When it came to laser printers I opted to go with
Hewlett-Packards. Their documentation is clear
and informative on all levels and they have good
customer support. As we are not an Apple site
the Laserwriter was not an option. I would stress
that I started buying nearly three years ago. There
have been great changes since those days. Today,
I would recommend that you go for a Postscript
printer, because it is the advent of Postscript and
W ' s adaptation to its environment which has
made really high quality output possible.

Lesson number four - you have to convince
the powers that be that the upheavals involved in
the implementation of QX are worth the effort
invested. We have an Administrator whose task it
is to ensure that the Institute runs efficiently and
all staff are relatively satisfied with their working
conditions. Rumblings of discontent from the ranks
were threatening to rock the boat and, to mix
metaphors. he was in the firing line. He rightly
asked why we should upset an established tradition
of external typesetting which, as far as he was
concerned, worked well. The Administrator had
never had to bear the consequences of an individual
author's frustrated typesetting resubmissions, the
authors having previously suffered in silence, yet he
was bearing the brunt of the secretaries' complaints.
To him brought no improvements.

The argument to use is cost effectiveness. We
needed to identify areas where 7&X would be of
benefit to the production of main-stream Institute
publications. A major vehicle in the TEX PR battle
was the publication of a comprehensive catalogue of
the Wellcome Library's Tibetan collection entitled
Tibetan Manuscripts, Xylographs and Thankas in
the Wellcome Institute Library. The work had
commenced in 1978 under the auspices of the
collection's former curator, Miss Marianne Winder,
and had been continued by her after her retirement.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 395

Helen Gibson

The project was being funded by the Trustees of
the Wellcome Institute, but there was some fear
that the funding would disappear if the catalogue
was not brought to publication before the end of
the 1989 financial year, which fell in September.

We took this on as a TEX project in the
summer of 1988. In many ways we had to start
practically from scratch. Text had started to be
input on the Displaywriter by Miss Winder herself
and had subsequently been transferred into D W ~ .

We converted all the D W ~ text into WordPerfect in
order to be able to use various inputting techniques I
had devised to speed up the procedure. I can tell you
that at this point Miss Winder was nearly having
kittens: she had spent years painstakingly typing in
all the entries, devising a form of codification that
she hoped a typesetter would transform into Tibetan
script and here we were practically stripping the
whole thing bare.

The ability to sit down with the author and
discuss the desired layout is an essential production
process. We are fortunate to benefit from having
a professional artist, Huw Geddes, on our staff
as Exhibitions Designer experienced in catalogue
layout, who was able to advise us in this area. The
format for the manuscripts and xylographs section
is more complex than that of the thankas, banners
and paintings. Therefore a crucial stage in the
undertaking of this project was in the creation of
the different style files. This is where someone
with an detailed knowledge of TEX is essential, in
this instance Dominik. Using his splendid
style files, the results illustrated in Figures 3 and 4
(Appendix) were produced.

Using this catalogue as an example, I shall
outline to you the steps I then took to make the

inputting procedure less of a burden for the
secretaries.

Firstly, PC TEX provides a simple menu facility
which allows you to switch easily between your ed-
itor, the rn program itself, the printing program
and the screen previewer. I strongly recommend
installing a screen previewer as it is useful for check-
ing page-breaks and formatting integrity. We use
MaxView. This is not a particular recommendation
for or against this previewer as I have not under-
taken a detailed evaluation of previewers; suffice it
to say that it serves our requirements.

The PCTEX.CFG file, which sets up the menu,
can be customised to use a particular editor or word
processor, along with certain options. I configured
the file to run WordPerfect with the /m- macro
command line option. When you use this option
as you start WordPerfect, the program immediately

executes a macro name, which you specify after the
/m-. The main TEX text file for the manuscripts
section of the catalogue was called TIB.TEX. I
created a WordPerfect macro, TIB.WPM similar to
the file name, consisting of the following key strokes:

{DISPLAY OFF3 (Text In/Out>I2
d:\winder\rnscript\tib.tex
(Enter3 CSetup36sCEnter3

As one wishes to work with ASCII files for
this macro retrieves the file called T I B . TEX in DOS
text mode. The macro then goes on to change
to an alternative keyboard layout called SANSKRIT.
Here the Sanskrit and Tibetan diacritically marked
characters as well as various frequently used words
such as

{\it\={A}rya\-vajra\-cchedik\=Ca)%
praj\-{n}\={a}\-p\={a}ramit\=o)

for ~ ~ ~ a v a j r a c c h e d z k ~ ~ ~ a j 7 i ~ ~ d ~ a m i t a , were mapped
onto CTRL-key combinations. The ALT-key com-
binations had WordPerfect macros relating to the
TEX formatting macros, e.g., \begin(physical)
\end(physical), assigned to them, thereby retain-
ing a conceptual consistency in macro calling for the
secretary. I should just like to bring to your atten-
tion the usefulness of using the pause feature within
the macro for paired commands or commands re-
quiring more than one argument. The WordPerfect
Save key F7 had another macro called DOS.WPM
assigned to it. When the secretary came to save the
document the macro changed the keyboard layout
back to the original, used the CTRL-F5 DOS Text
save with a pause to confirm the document name
including a .TEX extension, retained the prompt
to confirm overwriting, then used F7 to exit the
document without saving it as a WordPerfect file.

Within the PCTEX . CFG file:
%E=wp /m-%s
%C=tex tlplain %s
%V=view %s
%P=makeps %s
%T:Print :
%T=makeps %s
%C : LaTeX :
%T :Print :
/PT=d:\pctex\textfms
/PF=d : \pctex\texf mts
/PI=d:\pctex\texinput;d:\pctex\latex
/K

the %s stands for the "string" file name that you
would normally type after wp. To run the PC
menu the user types pctex and the file name at
the DOS prompt. Therefore, in this case, the
command pctex t i b ran WordPerfect with the
TIB.WPM macro with the results described above.
By utilising these features the secretary remains

396 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

within a familiar Wordperfect environment and has
far fewer keystrokes to input. Alternatively, if you
do not wish to install PC TEX on the secretarial pcs
then invoke the macro with wp tib.

The onerous burden, as she saw it, of w i n g
and printing the text is removed from the secretary
and centralised- with me. This does seem to make
the procedure of going through the P C W menu
redundant. The important concept to remember
is that if the secretary wishes to become more
involved, e.g., by using the previewer, then she
has that choice. The more people on site with
Q X competence gained through motivation, the
better. Any reasonably sized document should be
split into logically manageable chunks, usually by
chapter, for inputting. The whole, or its parts,
can then be processed and printed by using a main
text file (Figure 2, Appendix), which initiates the
document style and uses the \ input command for
the relevant chapter. By centralising the processing
and printing one can justify the expense of invest-
ing in a very fast machine with lots of memory,
thereby saving valuable time and freeing secretarial
PCS for inputting. For instance, I have a DELL

386 with a 90MB drive and 2MB RAM at the
moment. It also means that there is a focal point
for all queries and developments, of which there are
many. The developer of the application should be
aware of the output. Centralisation also encourages
standardisation in error correction procedures. If
the macros are well designed, there should not be
many problems arising from the inputting, particu-
larly with that old chestnut -the missing command
parameter.

Having gone through this procedure, we sent
off the 300 dpi laser printer camera ready copy to
our printer, the result being a hardback catalogue
which sells for L10 (approximately $16) per copy.
Because of the complexity of the typesetting, it
is unlikely that the catalogue would have sold for
less than L50 using conventional methods. I think
the powers that be were suitably impressed, and
Marianne Winder was ecstatic that she was able
to hold in her hand the culmination of a lifetime's
work. I would challenge any other 'DTP' package
to turn out work of this calibre.

By now we had proven cost effectiveness and
had convinced some of our authors that rn was
a good thing, with the immediacy of correction
and production virtually under their noses saving
them time and anxiety. We had even produced
catalogues for the various exhibitions held within
the Institute, but The Powers That Be were still not
convinced that 7JijX could be a viable alternative

From Manuscript to Bromide

to external typesetting. The problem lay in the
quality of the output. We were dependent on laser
printed camera-ready copy which, to be honest, at
a resolution of 300 dots per inch looked distinctly
splodgy to the eyes of those more accustomed to
commissioning professional publications. And then
there was the Computer Modern Roman font. To
our academics. librarians and curators steeped in
tradition it was not universally popular. They
wanted Times Roman at the very least.

Fortunately, along came PostScript which, with
its ever extending font families, became another de
facto standard and opened up new horizons for
in-house electronic publishing. Linotron then put
PostScript fonts onto their phototypesetters. This
means that if you have a PostScript laser printer
you can design and proof your document at 300dpi,
then send the file to the phototypesetter confident
in the knowledge that you will receive a bromide
at 1270dpi with the exact same line and page
breaks. The fact that we had Hewlett-Packard
printers which are not PostScript was not too great
a setback as we were able to purchase Jetscript
which is a Postscript enhancer for the HP Series 11.
However, I believe that the HP Series I11 will soon
be provided with a PostScript cartridge.

We were keen to take advantage of this new
potential, particularly as the University of London
Computer Centre had set up a phototypesetter
service using a Linotronic 300. The TEX world
did not ignore these developments either. Several
DVI to PostScript drivers began to appear. We use
one, DVItoPS, designed by James Clarke which we
obtained via the Aston Archives (detailed below).
There are also commercially available drivers. The
two I know of are from PC 7QX and ArborText.'

DVItoPS has a file dvitops . f n t in which you
substitute the name of the font as it is known to
T)$ (with the extension .tfm removed) with the
name of the font as it is known to PostScript, for
example Times -Roman. D V I t oPS also permits the
inclusion of PostScript graphics in the document.

Because of the Institute's links with University
College London we have access to their EUCLID sys-
tem. Through the simple expediency of purchasing
a modem (a Hayes Smartmodem 2400) and a good
communications package (PROCOMM), I am, from
my PC, able to link into JANET (the Joint Academic
NETwork) and thus the whole world. More specifi-
cally I am able to link to the ULCC Phototypesetter

Philip Taylor in Imagesetting, the Phototype-
setter User Group magazine of the ULCC, lists
several drivers.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 397

Helen Gibson

service. As KERMIT is bundled with PROCOMM I
am able to log into EUCLID, activate KERMIT on my
PC, call up the ULCC Typesetter service via one of
EUCLID'S PADS, activate KERMIT at that end and
have it transfer my laser printer proofed Postscript
files to the ULCC VAX. The DVItoPS program has
already enabled me to specify the required 1270dpi
resolution for the typesetter output as opposed to
300dpi for the laser printer. ULCC then run my file
through the Linotronic 300 and within two days I
receive the bromides by post at a cost of approxi-
mately £1 per page. In Figure 4 (Appendix), you
will see reproductions of identical catalogues we
produced for two exhibitions at the Institute. The
1987 version used laserprinter camera ready copy
with Computer Modern Roman fonts, the 1989 ver-
sion used 1270dpi bromide camera ready copy with
a Times Roman font. We were able to use the same
input file with minor modifications. The beauty of
Q X is that you struggle once, then use the fruits
of your labour over and over again.

WordPerfect Specifics
I have not gone into great detail describing how to
create keyboard layouts and macros, but refer you
to Anita Hoover's excellent paper on this subject in
last year's proceedings. I have given an example of
the use of an a l t e rna te keyboard layout above.
There are, however, a few procedures which I feel
can be usefully elaborated.

Firstly, a brief definition of the t e r m a l t e r -
na te keyboard layout , macro and s t y l e . With
an a l t e rna te keyboard layout it is possible to
change action performed by keys or combinations
of keys. Moreover, you can create several keyboard
de f i n i t i ons for different purposes. A macro is
a file you create to represent a whole series of
keystrokes. You can create a macro to perform
nearly any task that you could accomplish with a
series of keystrokes. This series can then be as-
signed to one key only in an a l t e rna te keyboard
de f in i t i on . The activation of the a l t e rna te key-
board de f i n i t i on can also be assigned to a macro.
S ty le is a powerful tool for controlling the format
of an individual document or a group of documents.
You define and name a style, and then when you
want to use that style, you select it from a list.
Again, macros can be used to search for and replace
a particular style with another. The combination
of these three features allows an incredible amount
of flexibility for 'l&X conversion. One example is
to create a macro in which you create a pai red
s t y l e for the C\bf and) formatting codes. This

macro can then be assigned to the standard Word-
Perfect function key for activating bold, F6, under
an a l t e rna te keyboard layout designed for m
inputting. A macro can be designed to activate that
keyboard whenever a document is to be in TEX. In
this way any secretary will be using familiar keys to
activate a bold command, but the output will be a
TEX command.

The complex nature of the documents I have
used in my examples so far has required the nec-
essary TEX command sequences to be input with
the text. For straightforward content it is possible
to allow the secretary to input using WordPerfect's
formatting codes but involving the use of Word-
Perfect's s t y l e and macro features. As I have
mentioned, a feature of s t y l e is the ability to
change the formatting codes within a document.
Again using the bold example, the beginning BOLD
command is replaced with C\bf and the end bold
with). To create a paired style like this you go into
a Paired Codes screen where your cursor is placed
before a comment box. This box represents the text
that is surrounded by the on and off conditions
for the style. You enter the control sequences for
the beginning of the style before the comment box,
{\bf in this example, then move the cursor down
to below the box and type in the sequences for
ending the style). An A l t macro can also be
created to activate this style.

By using Block you can then replace existing
codes in your document with this new s t y l e . To
do this you complete the following steps:

1. Place the cursor at one end of the block you want
to define.

2. Press Block (Alt-F4, or F12).
3. Highlight the block.
4. Press Style (Alt-F8).
5. Use the cursor keys to highlight the style you

want.
6. Select On (1).

All of these steps can, of course, be stored in a
single key macro.

In the academic world many documents contain
footnotes. With T@ the footnote text is included
in the main body of the text, which can often cause
problems with the authors when they are proofing
and editing. Footnotes change their reference points
or are taken out altogether, thus altering the rel-
ative numbering. WordPerfect's footnoting feature
offers the secretary a relatively painless means of
accomplishing this task. This is how to replace a
WordPerfect footnote with a I4m footnote. Go to
the top of the document as WordPerfect macros are

398 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

From Manuscript to Bromide

created by example. Use Ctrl-F1O to create the
macro. It can be called Alt-F. Use F2 to search
forward for the footnote option code Ctrl-7. Enter
1 for Footnote and 1 again for Note. At this point
the prompt indicates Search'[Footnote]. Press F2
to activate the search. The cursor will be placed to
the right of the footnote number, therefore move
it one space to the left over the number. Type in
\ footnote(which will go to the left of the number.
Then press Ctrl-F7, 1 for the footnote option and
2 and Enter. This takes you into the text of the
footnote number on which the cursor is currently
placed. Use WordPerfect7s Home Home $\down=-
row$ combination to take you to the end of the text
no matter how long it is. Type in the 3. Use Home
Home \uparrow to go to the beginning of the
text, just to the left of the number. Alt-F4 to start
blocking the footnote text, Home Home $\down=-
row$ to highlight the blocked text, then Ctrl-F4,
1 , 1 to move the block. At this point press F7 to
exit the footnote text back to the main body. Press
Enter to retrieve the text, which will be inserted
just after the < of \footnote(. Move the cursor one
space to the left and press Delete, Y in order to
delete the WordPerfect footnote number. To cause
the macro to repeat itself until no further footnotes
are found press Alt-F again. Ignore the ERROR
message : ALTF. WPM not found. Press Ctrl-F10
to exit the macro definition. To run the macro press
Alt-F, and away it goes. Note that in the I P W
environment there is no need to insert footnote
numbers. These are incremented automatically.

Conclusion
Before beginning to learn W , I would recommend
the apprentice m e r (or perhaps m a n) should
use D m , a macro package developed by Leslie
Lamport, as a starting point. If you are happy to
stick with his design specifications, then beautifully
turned out documents can be produced relatively
painlessly. I P m can give you the basic feel of m
and as you become more experienced and confident
in its use you can tweak it by adding macros of your
own. I should warn you to expect a few glitches at
this point.

I would advocate investing in back copies of
TUGboat. There has been a wealth of TEX and
Dm experimentation, experience and develop
ments over the past few years which have been
documented in this publication. If you are able to
link into an academic email network then subscribe
to m h a x , and/or U K m in the UK, where user
problems and solutions are aired. These bulletin

boards are not for the real beginner as all levels
of problems are intermixed, often with some prior
knowledge being assumed.

I have always been concerned that nonaca-
demic users are often cut off fiom developing m ' s
potential because of the difficulty in obtaining in-
formation if one is not on the network. When we
first began with 'Ik3 we were in this situation. We
were, and are, an IBM-PC compatible environment,
therefore we bought PC QX, thus gaining a com-
mercial company's technical support (admittedly
somewhat stretched at times across the Atlantic) to
help us overcome initial implementation problems.
To nonacademic users I would say look at the
commercial options in the PC or MAC worlds. It is
not absolutely necessary to be linked to electronic
mail. Peter Abbott at Aston University holds a
repository of all l&X related developments which
can be obtained on disk as well as downloaded. He
will also send you printed copies of UKQX.

I confess that I am not fully aware of all
the lastest developments in the QX world as other
responsibilities unfortunately demand my attention.
I am sure that more sophisticated set-ups can be
achieved. In fact, I hope that people will stand
up and tell us what other gems are available. My
intention in this paper has been to prove by my
example that any Noddy, with the help of Big Ears,
can achieve quite a lot. Your Big Ears is this m
community, which has never hesitated in sharing its
hard-earned experience. Don't be afraid to ask.

Bibliography

Hoover, Anita Z. "Using WordPerfect 5.0 to Create
and IP'I'EX Documents" TUGboat 10(4),

pages 549-559, 1989.
Knuth, Donald E. The W b o o k . Reading, Mass.:

Addison-Wesley, 1984.
Lamport, Leslie. U W : A Document Preparation

System. Reading, Mass.: Addison-Wesley, 1986.
MacKay, Pierre A. "Typesetting Problem Scripts".

BYTE 11(2), pages 201-218, 1986.
Stewart, et al. Using WordPerfect 5. Carmel, Indi-

ana.: Que, 1988

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Helen Gibson

Appendix

Works on Bhakti

~~ZdaZak~ar i koGakZr i kZ . -- AD 1839 S e r i a l no.1

leaves 7r-8v: paper. -- I n Sansk r i t . -- Copied by Suphagapa(?).

-- Date of copying: 14 k~gnapakga of ~ h a d r a ~ a d a , sarp 1896. -- Copied

i n Indrapras tha , Jasapatava ida(?) . -- Bibl iography: not i n NCC; not

the same t e x t a s MS ABC 199, nos.6431-6435. -- Complete i n 12

verses. Explains t h a t t he meaning of t he l e t t e r s

n ,m,bh,g,v , t ,v ,s ,d ,v ,y is namo bhagavate v&udevaya. -- With i)

BhutabhavigYatipra&a. -- ~ e v a n a ~ a r i s c r i p t .

Shelved a t a 971 (i i) .

Figure 1: Excerpt from first published handlist

% This is TIBET.TEX, the main text file for Marianne Winder's
% catalogue of the Tibetan manuscripts in the Wellcome's Oriental
% Collections.
\document style [tib] {book)
\pagestyle{myheadings)
%Working title page information
\title{A Catalogue of Tibetan manuscripts and Xylographs, \ \
and a Catalogue of Thankas and other Paintings and Drawings\\

in the Library of\\
Wellcome Institute for

the History of Medicine)
\author{by Marianne Winder)
\date{{\large{\tt Draft proof of \today)))
%% The document itself
\begin{document}
\maketitle %Comment *in* for final run
\markboth{{Manuscripts and Xylographs)){Manuscripts and Xylographs)
\input{tibtitle)
\input{copyrite)
\input{forewrd)
\input{mstit2)
\inputCmstoc}
\input iintro)
\input{abbrevtn)
\input{principl)
\input It ib]
\input {bib)
\input{mstitls2)
\input{shelf)
\end{document)

Figure 2: Main text file for mprocessing

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Manuscripts and Xylographs

From Manuscript to Bromide

1

Incant at ions against evil and diseases

Wellcome Tibet an I l b
1 Manuscript; 11 x 34(7 x 29) cm.; ff. 30; 5 lines to a page; dbu can; gold

and silver (i.e., yellow and white) writing on dark blue paper; painted
boards 1 1 i x 34cm. and leather strap.

Ff. 8-12: rdo rje r n a m p a r ' joms pa'i gzuris,
Vajravidiraninamadharanz; "Incantation of all conquering inde-
structible reality", [religion, ritual, incantation]. Tr ip i taka 406,8
Tr i p i t aka 574, l l translated by Jinamitra, Dana&la and Ye-Ses-sde.

Purchased at Sotheby's, 31.10.1933.

Wellcome Tibetan 21
2 Xylograph; 78; x 51 i c m . ; broadsheet; 7 lines to a page; dbu can; three

woodcuts.

s t a g seri o m I hf im . . . o m m a r?i p a d m e h i im h r i khyur i
'b rug,
"Tiger, lion, om a hiim, om ma ni pa dme hum hrih, . . . garuda,
dragon", [ritual, mantras].

Print used on prayer flags. Tiger, lion, garuda and snake are the
four conquerors of evil forces located in the four directions. -
Previous owner L. A. Waddell.
- Purchased at Sotheby's, 29.11.1920.

Wellcome Tibetan 36
Manuscript; 9 x 24;(7 x 22) cm.; ff. 27; 8 or 7 lines to a page; dbu rned,
& can; black and red ink on white paper, diagrams; strong brown paper
covers 9 x 24 3 cm.

Incipit in centre of f . l v : sga l tsh igs gser gyi,
"The golden spine", [ritual text with mantras].
Folios sewn together except f. 25 which is separate. - The illegible
beginning of the MS is on the brown paper cover. - Folio 24,
before dbu can script begins, is blank. - Previous owner Kohser
Temple, Lahore, 1871.
- Purchased at Stevens', 31.5.1907.

Wellcome Tibetan 37
Manuscript; 6 x 22;(4h x 19) cm.; ff. 113; 6 lines to a page; dbu med;
black and red ink on white paper; wooden, slightly carved boards 8 x
23 cm.

Figure 3: Sample page

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Case 6

ORIENTAL COLLECTION

T h e collection of o r ien ta l manuscr ip ts a n d pr in ted books - compris ing over
11,000 manuscr ip ts a n d some 3,000 pr in ted books in 43 different languages
- is one of t h e mos t impo r t an t i n Europe. Whi le medical h istory is cen-
t r a l t o t h e collection, m a n y cognate topics a r e represented. Var iety of
subject m a t t e r a n d language is matched b y diversity of med ium. Besides
paper a n d vel lum, t h e collection inc ludes manuscr ip ts wr i t ten o n bamboo,
bone, ivory, meta l , t ree ba rk a n d pa lm leaf. Th i s smal l d isplay indicates
someth ing of t h e divers i ty a n d var iety of t h e collection.

1. A m u l e t s
Amulets were employed t o protect man or his possessions from evil influences,
including illness. The amulet is found in the East and in the West, among
both tr ibal and settled peoples; and it exists t o the present day. Assyrians
and Egyptians, Greeks and Romans, Jews and Christians, fostered this ancient
tradition - which, among the Jews, has a history of some three thousand years.
Three Hebrew medical amulets are displayed:

i. A m u l e t f o r a f r u i t f u l ma r r i age . c . l f th century; written in
Italy in iron gall ink on paper.

ii. A m u l e t f o r t h e p r o t e c t i o n o f Be la d a u g h t e r o f R a c h e l
f r o m p lague . c.18th century; vellum.

iii. A m u l e t f o r the p r o t e c t i o n o f Moses D a v i d s o n o f Esther
f r o m p lague . ~ 1 8 t h century; vellum contained in parchment case.

2. M e d i c a l n o t e b o o k
This beautifully copied Hebrew manuscript, probably the notebook of a physi-
cian called Elhanan (f. l lv), contains marginal annotations. Patients are named,
including Moses, the writer's son (f. lor), and Dulcita his wife (ff. 15v & 16v).
The opening shown includes a remedy for pain in the ilium. Copied c.l7th/18th
century, in a fine Italian hand.

3. B i r k o t ha -m i l ah u - m i n h a g wa-sepher ha -m i l ah k e p h i h a - n a h u g ba-
z'ot ha-keh i l lah . London.
'Blessings of circumcision and the conduct and service of circumcision as i t is led
in this congregation . . . London'. This finely executed Hebrew manuscript was
copied by Isaac Luria in London during the late 18th or early 19th centuries:
i t lays out the form of senrice for the ri te of circumcision to be followed by a
London congregation.

Case 6

ORIENTAL COLLECTION

The collection o f oriental manuscripts and printed books - comprising over I 1,000
manuscripts and some 3,000 printed books in 43 different languages - is one of-
the most important in Europe. While medical history is central to the collection,
many cognate topics are represented. Variety of subject matter and language
is matched by diversity of medium. Besides paper and vellum, the collection
includes manuscripts written on bamboo, bone, ivory, metal, tree bark and palm
leaf.

I . Amulets
Amulets were employed to protect man or his possessions from evil influences. including
illness. The amulet is found in the East and in the West, among both tribal and settled
peoples; and it ex~sts to the present day. Assyrians and Egyptians, Greeks and Romans,
Jews and Christians, fostered this ancient tradition - which, among the Jews, has a history
of some three thousand years. Three Hebrew medical amulets are displayed:

I. Amulet for a fruitful marriage. c. 17th century; written in Italy in iron
gall ink on paper.
ii. Amulet for the protection of Rela daughter of Rachel from plague.
c.l8th century; vellum.
iii. Amulet for the protection of Moses David son of Esther from plague.
c.18th century; vellum contained in parchment case.

2. Medical notebook
This beautifully copied Hebrew manuscript, probably the notebook of a physician called
Elhanan (f. I Iv), contains marginal annotations. Patients are named, including Moses, the
wr~ter's son (f. IOr), and Dulcita his wife (ff. ISv & 16v). The opening shown includes a
remedy for pain in the ilium. Copied c.I7th/lXth century, in a fine Italian hand.

3. Rirkot ha-milah u-minhag wa-sepher ha-milah ke-phi ha-nahug ba-z'ot ha-
kehillah. Lxmdon.
'Blessings of circumcision and the conduct and service of circumcision as it is led in this
congregation . . . London'. T h ~ s finely executed Hebrew manuscript was copied by Isaac
Luria in Idondon durlng the late 18th or early 19th centuries: it lays out the form of service
for the rite of circumcision to be followed by a London congregation.

4. Sharh Qaniinca. 'Commentary on K. Qanunfa, ' a resume by al-Jaghmini of K.
al-Qanun.
K. Qanunfa, a once popular medical work written by MahmOd b. 'Umar al-Jaghmini Id.
13441. The Arabic commentary shown here was written by 'AIi h. Kamil al-Din Mahmud
Muhammad Tahir of Constanttnople. It is transcribed in the Naskh style and dedicated to
the Ottoman Sul!an, Baywid Khan b. Muhammad Khin b. Murad Khin.

Figure 4: Pages compared

Problems on the
~ /Pos tScr ip t /Graph ics Interface

Robert A. Adams
Dept. of Mathematics, The University of British Columbia, Vancouver B.C. Canada V6T 1Y4
Bitnet: useradmsQubcmtsg, Internet: useradms0mtsg.ubc.ca

Abstract

This paper discusses several problems which arose in the process
of using rn and PostScript together to produce two calculus
textbooks. Three of these problems were particularly important.
The first was getting a reasonable combination of Postscript
(scalable) text and math fonts that looked "good in 1270
dpi output from a Linotronic phototypesetter. The second
was devising a practical method for getting suitable (and well
aligned) two-colour separation for text and graphics. The third
involved incorporating labelling in PostScript graphics.
Solutions to these problems were largely dictated by the software
available at the time the solutions were needed, about one and
a half years ago.

Background copy for a typist and artist, than the author ac-

'QX was designed to produce beautiful books, es-
pecially ones which contain mathematical formulas.
It is therefore natural to choose 7QX to typeset a
calculus book, but calculus books require numerous
diagrams which themselves have mathematical for-
mulas for labels. It is fairly easy to produce even
very complex mathematical diagrams in Postscript,
either directly or indirectly using high-level soft-
ware which generates PostScript code. Therefore
it is also natural to produce a calculus book in a
Postscript environment.

During the past two years I have been involved
in many aspects of the production of two calculus
textbooks, Single-Variable Calculus, and Calculus:
A Complete Course, both published in Canada by
Addison-Wesley. Besides writing these books, I was
responsible for all the typesetting, and the construc-
tion of all the macros necessary to implement a book
design. Many (but not all) of the design elements
were specified by a professional book designer.

Anyone who has ever authored a textbook us-
ing any system will know what a monumental job
that can be. Knowing what information you want
to present, and how you want to present it, is only a
small part of the task. Getting a respectable type-
script copy in the days before personal computers,
word processers and computer graphics packages
usually meant more hours at a typewriter or draw-
ing board, or preparing and editing handwritten

tually spent composing the material. Such was
the state of affairs when I wrote the first edition
of Single-Variable Calculus for Addison-Wesley in
1981 - 1982. It was my second book done by the old
method, and I resolved at the time never to write
another book! Then in 1984 my Editor sent me
Addison-Wesley's newly published M i c r o w , and
a copy of The m b o o k , and my life was changed
forever. He wanted a review of M i c r o w . He
got a review, and another book, Calculus of Several
Variables (Addison- Wesley, 1987).

At that time we were still using Almost Modern
fonts, and this author, at least, had never even
heard of PostScript. The typesetting was successful .

enough, though Addison-Wesley (Canada) and I
were both feeling our way as far as design was
concerned. The problem of two colour separation
came up, but was not adequately solved. In the
end the production department got out the scissors
and glue, and the separation was done a posteriori
without the help of a computer. The diagrams
were all redone by a graphics professional on a
Macintosh from plotter copy I supplied, and they
left a lot to be desired. Moreover, there were several
serious colour alignment errors in the final book,
which arose from the fact that the alignment of
black and second-colour components for the figures
were performed by someone who did not fully
understand the devastating consequences of even
a minor misalignment in a complicated two-colour

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 403

Robert A. Adams

figure. I decided at that time that if I ever did
another book, I would try to have a system in which
I could produce most of the figures and integrate
them directly into the production files myself.

By the time Addison-Wesley had raised the
issue of a new edition of Single-Variable Calculus,
(mid 1988), I had become reasonably familiar with
Postscript and had acquired a 300dpi Postscript
printer for my PC system. I had also developed
a preliminary but useful version of a two- and
three-dimensional mathematical graphics program
MG which produced the kinds of figures I use in my
books. (I had used that software to generate rough
plotter copy for the several variable book.) There
were, however, some problems which still had to be
solved. Of these, the most important were

0 getting suitable fonts to use with l$X for
doing mathematical typesetting in a PostScript
environment.

0 devising a simple system for getting two-colour
separation in text and graphics.

a geting labels into my figures.
I will deal with each of these in turn.

The Font Problem
At the outset I should say that my setup two
years ago consisted of an AT clone with colour EGA
monitor, Addison-Wesley's M i c r o w , and (version
4.0 of) ArborText's PREVIEW and DVILASER/PS
driver programs. I had constructed a modified
version of p la in . t ex called psplain . tex which
used a hybrid of Postscript Times fonts for text
mode material and Computer Modern math fonts
for math mode material, with a few other minor
modifications to clear up some problems which arise
from the fact that l$X manufactures some symbols
such as "#" using elements from text and math
families.

Copy at 300 dpi resolution obtained from
psplain looked fine to me, and to my editors.
However, a sample generated on a 1270 dpi Post-
Script phototypesetter exposed the first serious
problem. While the text mode material came out
at 1270 dots per inch, the math mode material was
still at 300 dots per inch, because DVILASER/PS
had downloaded raster patterns for the cmmi, cmex,
and cmsy fonts into the PostScript file. I suppose
we could have tried to obtain 1270 dpi versions of
those fonts, but I had no access to METAFONT.

About that time, I was given a copy of some
PostScript (scalable) versions of these fonts pro-
duced on a Macintosh using the FONTOGRAPHER
program, so we tried them. The combination again

looked good at 300 dpi, but at 1270 dpi a new
problem became apparent. The CM math fonts
have considerably less weight than the Times family
of text fonts. Here is a sample formula involving
characters from both families. It is magnified (to
20 points) to show the difference in weights.

max{a< xk} > cos ?l,

The combination would not do at all. At this point
I would have given a good deal for a working version
of John Hobby's MetaPost program [Hobby, 19891,
or any other program that would produce Post-
Script outline fonts from METAFONT descriptions.
I had a preprint copy Leslie Carr's paper [Carr,
19881 on converting METAFONT logfile output into
a PostScript font description, but I was certain I
was not a good enough programmer to implement
it, at least not quickly.

A solution for this problem was finally found,
and it was definitely a hack. The FONTOGRAPHER
program generates the characters of a Postscript
outline font in a coded format which is preceeded
in its output file by a Postscript prolog with
definitions which enable the PostScript interpreter
to understand the code and construct the character
in the printer's memory. Being machine produced
PostScript, even these definitions are a bit hard to
read, but after some study I was able to conclude
that the character outlines were merely being filled
(with black) rather than stroked with a PostScript
pen. Lines 10 and 11 and 22 in this prolog began

/Strokewidth 0 def

I altered the definition of the F i l l and E o f i l l
operators being used so that in addition it stroked
the outline with a pen of a prescribed thickness.
After some experimentation, I determined that the
thickness should be about 0.22 points for a nominal
10 point font. Thus, the Postscript prolog for the
outline fonts cmmi, cmsy, and cmex was modified to
become

/Fill{{gsave f i l l grestore stroke3
Cf i1l)def

/Eofi l l((gsave e o f i l l grestore
stroke3Cfi l l)def

/Strokewidth 22 def

404 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Problems on the m/PostScript/Graphics Interface

(The Strokewidth variable is measured in thou-
sandths of the nominal design size of the font.) Off
went another test to the phototypesetter, this time
successfully. Here is a sample of the output with
the same mathematical formula shown earlier.

I'm sure that experts in font design would find
any combination of two such different typefaces as
Times and Computer Modern aesthetically unsat-
isfactory, but the average mathematics student or
instructor, and maybe even the average editor, does
not. As so often happens in the real world, there
was a problem which needed an immediate solution.
While not ideal, an acceptable solution was found.

The Colour Separation Problem
Most textbooks these days use two or even four
or more colours to achieve greater visual impact.
Several queries about how to accomplish this with
rn have appeared in m h a x in the last few years
(one was from me), and I have never seen an
adequate response. Of course, in a sense S L ~
has solved the multi-colour problem by using blank
fonts (which have TFM files corresponding to those
of printing fonts but themselves print only blank
characters. It has, however, never been clear to
me how to obtain (or construct) such blank fonts.
There is also the TEX \phantom command, but I'm
not sure how that would react to a pagefull of text
to be blanked out. (I admit, I've never tried.)

Ideally, one would like to arrange the following
situation for two-colour separation. There should
be defined two control words, \black and \ red
say, so that you would insert one of these words in
the source code at points where you wanted
to switch from red to black or from black to red.
There should also be defined at the beginning of
the TEX source two Boolean controls, \pr in tb lack
and \pr in t red, which should be set to true or
false according to whether "black" output, "red"
output, or both combined is desired. There remains,
however, the problem of how to get the nonprinting
colour to leave blank areas on the page exactly
corresponding to the material that would appear if
it were printing.

I still do not know how to solve this problem
using TEX, but there are fairly easy PostScript
solutions. PostScript has a setgray operator which
determines the gray-level of printing. Thus 0

se tg ray causes printing in black; I setgray causes
printing in white, i.e. no printing at all unless the
background is not white. Numbers between 0 and 1
result in different levels of gray. Define pr in tb lack
and p r i n t r ed as PostScript Boolean variables which
you set to true or false according to whether you
want either or both colours to print. Then have
the 7JjX \black and \ red commands insert Post-
Script operators black and red respectively, into
the PostScript file via \spec ia l commands to the
PostScript driver. The PostScript operator black
could be defined as 0 setgray if pr in tb lack is
true, and I setgray if pr in tb lack is false. A
similar defintion is made for red.

The above solution works well for text (e.g.
headings, boxes and such items where black and red
are never overlaid), and it is clearly generalizable
to more colours. However, it poses problems for
graphic material. PostScript is designed so that
graphic elements plotted later always obscure ones
plotted earlier in regions of overlap. For example, in
a figure where a red curve (or pink shaded region)
crosses or overlaps an earlier plotted black curve (or
gray shaded region), the red element will blank out
those parts of the black element where it overlaps.
This is not what you want! In the final copy black
ink is quite opaque, red less so, and light shades of
pink or gray are not at all opaque and should not
blank out one another.

The solution to this problem was to redefine
the PostScript operators black and red so that,
depending on the values of pr in tb lack and p r i n t -
red, each translates the PostScript origin some
large distance in one direction or another. This
causes printing of the undesired colour to occur well
outside the boundaries of the physical page, and
thereby leaves the printed elements intact. The
Postscript driver DVILASER/PS can insert some
PostScript prolog code of its own at the beginning
of the PostScript output file it creates from a 7JjX
dv i file. In my installation, that prolog code begins

% SET THE FOLLOWING BOOLEAN SWITCHES t rue
% FOR WHICHEVER "COLOUR" OF OUTPUT IS
% DESIRED. SET BOTH TO t rue TO PRINT
% BOTH COLOURS SIMULTANEOUSLY. DO NOT
% SET BOTH SWITCHES fa lse AT THE SAME TIME
%
/pr intblack { t rue 3 def
/pr int red { t rue) def
%
/ r red { pr int red {O setgray) (1 setgray

i f e l s e) def
/bblack { printblack (0 setgray)

{1 setgray) i f e l se) def
%
/black { bblack f i rs tswi tch

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Robert A. Adams

{/doingblack {true) def
printblack not {5000 5000 translate
/firstswitch {false) def) if 3
{ doingblack not {5000 5000 translate
/doingblack {true) def) if 1
ifelse) def

%
/red { rred firstswitch

{/doingblack {false) def
printred not {-5000 -5000 translate
/firstswitch {false) def) if)
{ doingblack (-5000 -5000 translate
/doingblack (false) def) if)
ifelse) def

%
/setoldgray { currentgray dup

/oldgray exch def) def
%
/restoregray oldgray setgray) def
%
/fixblack { setoldgray pop 0 setgray) def
%
/maxgray { dup hewgray exch def

setoldgray ge {newgray) {oldgray)
ifelse setgray) def

These definitions are a little complicated, probably
more so than absolutely necessary to achieve the
desired effect. The definitions of setoldgray,
f ixblack, and restoregray are made to facilitate
the printing of crop marks, registration crosshairs,
and manuscript header information outside the
margins of what will be the final trimmed page,
on all printed pages regardless of the settings of
pr in tb lack and pr in t red. The operator maxgray
is useful when colour separating shaded figures.

These PostScript definitions are accessed in the
TEX source code by means of the following control
words defined at the beginning of the macro file
containing all the macros for the book.

% SVC-PS.TEX
%
% Format for Calculus Book
% (Postscript Version)
% R. Adams revised 15 Dec 89
%
% first some defs to set up
% Postscript for two colo&s
\def\red(\special{ps:: rred))
\def\black(\special{ps:: bblack 1)
\def\fixblack{\special(ps::

bblack fixblack))
\def \restoregray(\special{ps: :

restoregray))
\def\logo{\hbox tol7pt(\special(ps::

rred logo bblack)\hfil))
\def\regmark(\hbox to60pt(\special{ps::

regmark)\hfil))

Here logo and regmark are PostScript procedures
which produce a logo character for use in section
headings in the book, and the registration crosshairs

mentioned above. To illustrate the use of \red and
\black in the 'I$$ source, here is the definition of
the macro \examp used to introduce examples in
the book.

\long\outer\def\examp #l\par{\penalty-200
\vskip 12pt plus 2pt minus2pt
\global\advance\itemno by1
\noindent \llap{{\exampf ont \red EXAMPLE
\itemlabel\hskiplpc\black))#1)

The word "EXAMPLE" and its label number are
printed in red in the left margin. The \make-
headline macro illustrates the k e of \f ixblack
to ensure that the crop marks \ulc and \urc, and
headline material outside the crop boundaries print
regardless of which colour is printing. Exceptions
are the words "black" which is printed only if black
is printing, and "colour" which prints only if colour
is printing.

\def\makeheadline(\vbox to Opt{%
\vskip-82pt\hbox to\pagewidthI%

\fixblack\kern-196pt\copy\ulc
\qquad\raise12pt\hbox(%

\figfont ADAMS:
Single-Variable Calculus
chapter \number\chapno\ -- page
\number\pageno\quad
\red colour \black black
\fixblack\quad\today) \quad

\raise12pt\regmark
\hf i l l \ r lap{\kern42pt\copy\urd
\restoregray)

\vskip26pt
\hbox to\pagewidthI\the\headline)\vss)
\nointerlineskip)

This system for colour separation works well.
In PostScript code for figures, one inserts the
Post Script operators red and black where colour
changes are desired.

Labels on PostScript Graphics

In a calculus textbook mathematical graphics, both
two and three dimensional, are a very important tool
for presenting information and making it intelligible
to the student. Most such graphics require labels
involving mathematical formulas, sometimes almost
as complicated horn a typesetting point of view
as the formulas appearing in the text. It is
therefore very helpful to be able to use TEX to label
figures. Most commercial software programs which
produce mathematical graphics do not support this
capability yet. On the other hand, programs
designed specifically for doing graphics within a
TEX environment are not of sufficient sophistication
to produce the quality of mathematical graphics
which can be generated by writing PostScript code.

406 TUGboat, Volume 11 (1990), No. 3- Proceedings of the 1990 Annual Meeting

Problems on the m/PostScript/Graphics Interface

I wanted the best of both worlds, and it seemed
necessary in this instance to do some actual pro-
gramming to produce a mathematical graphics pack-
age which would produce both PostScript output
for the graphic and, simultaneously, T$jX labelling
information. Over several previous years I had
developed, using Turbo Pascal, a graphics program,
MG, which produced a variety of two-dimensional
plots of functions and equations as well as lines, vec-
tor fields, freehand spline curves and such, and was
also able to produce three-dimensional diagrams
of curves and surfaces ruled by families of curves.
The program produced HPGL output, because I
happened to have a Hewlett Packard plotter at the
time. Such output was not of suitable quality for
publication.

About two years ago my colleague, Dr. Robert
Israel (Mathematics Department, The University of
British Columbia) took over the M G project and
redesigned the user interface, making the program
much easier to use, and at the same time much more
functional. Meanwhile, I altered the file output of
the program to produce, instead of a single HPGL
file, two files for each figure created, one a Post-
Script description of the graphic, and the other a
text file containing labelling information in m-
readable form. All that was then needed was a m
\f i g i nse r t macro to pass on the PostScript file in
a \specia l , and read the label file, typesetting the
labels at the correct positions.

Specifically, the command
\ f ig insert(myf ig)

carries out the following operations:
First it opens the label file myf i g . lbl and reads
the first two lines, which contain integers giving
the width and height of the graphic in points.
It builds a vbox with those dimensions and
vfills it so that the PostScript currentpoint
(from the PostScript driver's point of view) is
at the bottom left corner of that box.
Next it passes the file myfig.ps to the driver
with a \special . The PostScript code in
myf ig .ps (which is bracketed by a PostScript
gsave - grestore pair) translates the Post-
Script origin to the current point and draws
the figure.
Finally the macro processes the remaining lines
of the label file in groups of five. These are x
and y coordinates of the position of the label in
the vbox, two codes representing the horizontal
and vertical justification or centering of the
label, and finally the 'I]EX label itself.

0 Reading of the label file terminates when a
negative x coordinate is read. (MG inserts -1
as the last line of the file.)
Here is a list of the \f ig inser t macro.
\newcount\pswidth
\newcount\psheight
\newcount\justx \newcount\ justy
\global\justx=O \global\justy=O
\newcount\vpos \newtoks\label
\newread\labelfile
\newcount\xcoord \newcount\ycoord
\newif\ifdoit \newbox\labox
%
\def\newfiginsert#l{\openin\labelfile=#l.LBL
\global\read\labelfile to\pswidth
\global\read\labelfile to\psheight
\vbox to\psheight pt{\vfill

\special{ps: : /f irstswitch {true} def)
\special{ps: plotfile #i.PS)
\special{&i : :- printblack not

C5000 5000 translate} if 3
\vskip-\psheight pt\ninepoint%
\hbox to\pswidth pt{\hss}%
\parindent=Opt\offinterlineskip
\vpos=o

% read in label information
\loop

\global\read\labelfile to\xcoord
% test for end of labelfile

\ifnum \xcoord < 0 \doitfalse
\else\doittrue\fi

\ifdoit \global\read\labelfile to\ycoord
\global\read\labelfile to\justx
\global\read\labelfile to\justy
\global\read\labelfile to\label
\global\setbox\labox=\hbox{\label~

% insert he label, suitably justified
\advance\vpos by-\ycoord
\vskip-\vpos pt \vpos=\ycoord%
\hbox to\pswidth pt{\hskip\xcoord pt%

\hbox to OptC\ifnum\justx>O\hss\fi%
\vbox toopt{%

\ifnum\justy<2\vss\fi%
\nointerlineskip\vbox

to\dp\labox{\vfil)
\nointerlineskip\copy\labox%
\nointerlineskip\vbox

to\ht\labox{\vfil)
\nointerlineskip%
\ifnum\justy>O\vss\fi)%

\ifnum\justx<2\hss\fi)%
\hssl

\repeat
\special(ps: : printblack not

{-5000 -5000 translate} if 3
\advance\vpos by-\psheight%
\vskip-\vpos pt}

\closein\labelfile}

The \ f i g i nse r t macro is a low-level one. In
practice, figures are inserted by more high-level
macros which call \f ig inser t to place one or more

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Robert A. Adams

figures across a line or in a box, and which may also
supply titles or headings for the figures.

The system is not perfect. MG takes no account
of the actual size of a label, vertically or horizontally.
(It does not attempt, for instance, to read any TFM
files.) Therefore, each figure needs to be printed
once after it is created to check on the positions
of labels. Occasionally a label needs to be moved
in one direction or another to avoid colliding with
other elements in the figure. Such moving of labels
is most easily accomplished by directly editing the
label file to alter the coordinates of the label. All
one needs is a pica ruler such as the handy plastic
ones given out at rn Users Group meetings to
advertise P C W . Here is an example of a figure
created by MG for Calculus: A Complete Course,

and here is its label file.
217
173
204
149
0
0
$\ss x$
214
66
0
2
$\ss y$
108
7

Here \ss is an abbreviation for \scriptstyle.

One final comment about producing PostScript
graphics for inclusion with rn. There are nu-
merous programs on the market which can be used
to produce Postscript graphics output on an IBM
PC, a Macintosh, or on other personal computers.
(See J. T. Renfrow's paper [Renfrow, 19891 for
methods of integrating such graphics into a TEX
document.) More and more of these programs are
capable of generating what is called Encapsulated
PostScript. This means that the PostScript code
which defines the graphic is bracketed by interfacing
code in a standard format which appears as ignor-
able comments to the PostScript interpreter, but
which conveys necessary information (for example
the size of the graphic) to external programs which
must assimilate the graphic as part of a larger
document. It is encouraging to see implementers
of DVI-Postscript drivers such as ArborText are
now taking note of this standard and providing for
easy inclusion of Encapsulated PostScript in
documents via \special commands.

Bibliography

Carr, Leslie. "Of METAFONT and PostScript."
W n i q u e s 5, pages 141 - 152, 1988.

Hobby, John D. "A METAFONTlike System with
PostScript Output." TUGboat 10(4), pages 505 -
512, 1989.

Renfrow, J. T. "Methodologies for Preparing and In-
tegrating Postscript Graphics." TUGboat 10(4),
pages 607- 626, 1989.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

7&X in Practice: Comments on a
4-Volume, 1400-page Series on l$jX

Stephan v. Bechtolsheim
Computer Science Department, Purdue University, Computer Science Building, West Lafayette, IN 47907
Integrated Computer Software, Inc., 2119 Old Oak Drive, West Lafayette, IN 47906
(317) 463 0162, (317) 494 7802. Internet: svbQcs.purdue.edu

Abstract

This article discusses a four volume, 1400 page series, about
m. It discusses two aspects: first of all I will discuss how
processing a document of this size was organized. Second I will
discuss extensions to rn which I consider desirable.

A Short Introduction

In a previous draft of this article I had written
about a page and a half about what pain it is to
be an author, in particular the author of something
as long hat and elaborate as the books under
discussion; I still do not know whether there will be
any real rewards since the fees paid to authors are
mediocre, at best. But on the other hand: I could
have quit at any time, and I decided stubbornly not
to do that.

Yes, it was a frustrating activity, but now it's
already the past!

Processing 1400 Pages of
Source Code

How did I manage a 1400 page 7&X document?
There are a number of additional programs that I
used, which are described below.

The Computing Environment. Let me describe
my environment briefly: I use a SUN 3/50 with an
extra 4MB of memory (that's 8MB alltogether) and
a 327MB local disk. This machine is hooked up to
the department's ethernet. 3150s are not terribly
fast machines so the real processing takes place on
a departmental Sequent. The source code is copied
to the Sequent using the r d i s t program (remote
distribution) so that only those files which changed
are copied.

I use the GNU Emacs editor, as far as I am
concerned, the best editor around. I have written
a small rn mode for this editor which makes the
editor much easier to use with a m document. I
cannot repeat frequently enough how important a
good editor is: you spend most of the time editing
your text, and therefore the best editor is just good
enough. See Bechtolsheim 119881 for details.

Some Statistics. Let me give some statistics about
this series of books. The source code of this series
is about 70000 lines of code, which occupies
about 2.2 MB of storage. All dvi files together are
about 3MB long. The size of the directory in which
the processing of the book takes place, is about
16 NIB, around 20 MB if all Postscript files (I have
a Postscript printer attached to my workstation)
are also stored. The series is subdivided into
57 different files of source code files which I call
part source files, some of which are of auxiliary
nature, but most of them are one chapter of a
volume of this series. The part source files also
include parts belonging to a fifth volume that is
not published, but contains information such as any
matters pertaining to the publisher or shell scripts
which I used for a variety of functions. There are
228 macro source files which are published with this
series.

For the following please note that all volumes
together are regarded as one unit. and they are
processed as such. Therefore, cross-references across
volumes are not really any different from cross-
references within the same volume.

The Input Language, the Preprocessor Used.
The input language is of course largely W, but
I made some extensions. These are not extensions
to r n , but codes interpreted by a preprocessor,
pretex, which I now discuss briefly. The tasks of
the preprocessor are as follows:

1. Allow for the direct inclusion of macro source
code. Originally, without the preprocessor, my
set up was as follows: I would store the source
code of a macro which I describe in the series,
with comments, in an external file. I then used
\Listverb to read in such an external file to
generate a verbatim listing of it. In case I

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 409

Stephan v. Bechtolsheim

wanted to use this macro source file I would
use \input to read in the macro source file.
I ended up with tons of macro source files,
as you can imagine. Note that the previously
given figure of 228 macro source files does not
even include the source files of all examples!
The correct figure is close to 500 files.
This was the main reason for the design of this
preprocessor, which allows me to do two things
with lines in the part source file:
(a) Include macro source code files directly.

The preprocessor writes this macro source
code to external files and includes its ver-
batim listing in the output file generated
by the preprocessor (this output file will
later be processed by m) .

(b) The preprocessor allows me to switch back
and forth between writing a macro source
file (and including its verbatim listing in
the main output file) and writing com-
ments, which appear as ordinary output in
the book, but do not appear at all in the
macro source file.

2. Maintain the makefile. I made extensive use
of the UNIX utility make to process my book.
The main idea behind using make is, of course,
to let a program (rather than an unreliable
human being) figure out which parts of the
series need to be reprocessed after a change,
and which do not.
Administering that part is quite difficult, which
was another reason for writing the preprocessor.

3. Administer overlays. As you will see later, I
used an overlay dvi file processor (or DFP for
short). Again, certain functions are controlled
by input to the preprocessor.

4. Administer the inclusion of log files. There
are a great many log files included with the
documentation. The generation of these log
files is controlled by information written to the
makefile generated by the preprocessor.
There is actually another program used in

building makefiles, but this is beyond the scope
of this article. For pretex and the utility just
mentioned see Bechtolsheim [1990b] for details.

Note also that before w is actually executed
to process a part, some other T)-$ executions may
take place, for instance, to produce log files included
in parts of the series, or to generate dvi files of
figures overlaid in this series.

Running T'X. Running m is the easiest part
in this context. I always process only one part at a
time, and if you read T&$ in Practice (in particular

volume 111) then you will find that the set-up is
quite similar to that of IPW: one part of the series
is processed at one time. Also, during this step, an
index file is written out for each part.

Because I process only one part at a time, at the
end of every processing step (tex main, assuming
the main source file is called main.tex), I would
rename main. dvi and main. log appropriately as,
say, i n t ro . dvi and i n t ro . log.

After m. After has executed, the dvi
processor which I mentioned previously (see Bech-
tolsheim [1990c]), is executed twice.

The main purpose of the first execution is to
extract positional information for marginal notes. I
generate marginal notes using the DFP because this
allows me to separate the marginal note generation
completely from the generation of the text itself. I
use marginal notes for the following purposes:

1. Communication with the editor (I am, of
course, talking about the "person" editor rather
than the "program" editor). If I have a ques-
tion, I simply put this question into the margin.

2. Addition of change bars. I found change bars
an extremely useful feature. In case of a
change to an already edited chapter, I could
mark those changed areas easily so that my
editor could have yet another look at it.

3. Print index terms in the margin. To develop
an index is considerably simplified, if the index
information is written into the margins of the
document. This way when the index is being
developed it is immediately visible which index
terms refer to a specific page.
The second execution of the DFP does the

following:
1. Puts the date, time, version number, and file

name on every page.
2. Extracts information about which fonts were

used in each part and store this information.
This allows the generation of a table listing all
the fonts used.

3. Overlays other dvi files. There are a number
of instances where output generated by sepa-
rate lQJ runs must be glued into the main
document. This function is performed at this
point.

Extensions of

In the remainder of this article I discuss possible
extensions of m. Theoretically, 7IE.X can be
made to do anything, but this is not really true in

410 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Tk.X in Practice: Comments on a 4-Volume, 1400-page Series on rn

practice. Therefore, let me discuss what I would
like to see added to m.
Operating system and interface related ex-
tensions. I would like to see a more flexible in-
terface with the operating systems on which m
runs. I am thinking of features such as opening and
closing dvi files, asking whether or not certain t f m
files are accessible, writing all characters to external
files (including characters such as tabs and returns,
I am thinking of a \writechar primitive analogous
to \char). In 3.0 the current line number is
accessible, which is something I would have listed
here if that were not the case. I would also like to be
able to invoke other other programs, and I realize
that m source code using this feature would be
restricted in their portability.

Graphics extensions. I have n o desire for any
graphics extensions. The inclusion of Postscript
generated figures works just fine.

Insertions and output routines. Because of the
size of U r n ' s output routine and the fact that
insertions are no t used for figures and tables (only
for footnotes), I would like to see an extension to
m ' s insertion mechanism. It should be made
more powerful to allow one to specify, for instance,
the number of insertions that can be permitted on
one page: both a maximum and a threshold vertical
length which, if exceeded by insertion material, will
prevent other material from being printed on that
page. This is a very short description of what I
have in mind; IPm has a whole set of style-file
related parameters, which really should be built-in
parameters of the insertion mechanism of m.

What I envision is a set-up in which the
insertion queues are accessible to the user, so that
the user can write TfjX code which inquires about
the number of elements in an insertion queue, the
length of individual insertion elements, and so forth.

Also, when r n ' s page-breaking algorithm
completes a page and puts it in box register 255, the
glue and penalty information around that break-
point is essentially lost (with the exception of the
setting of \outputpenalty). It is thus impossible,
from within the output routine, to restore an old
page in its entirety.

Paragraph computations of m. Typesetting
specifications by publishers may prohibit a page
break just following a heading or in the fol-
lowing two or three lines of text. Therefore
an \af terclubpenalty should be introduced, and
maybe one should generalize this penalty business
even further.

The \everypar register is evaluated after the
\parskip glue has been sent to the vertical list
with the current page or vbox. This makes it
difficult to use \everypar. Therefore, I would like
to have a built-in token register \everyvpar which
is evaluated as soon as Tk.X decides it is time to
begin a paragraph but before m gets around to
doing anything about it.

There should be a \parskippenalty as well
as a \baselineskippenalty and a \ l ineskip-
penalty.

Expansion, grouping. I would like to have access
to the current level of grouping in the form of a
read-only counter register. This would allow me
to determine at the time a heading is encountered
whether all preceding groups have been terminated
(that is, I would like to be able to set up QX
in such a way that groups cannot extend beyond
certain subdivisions of a document).

A boolean data type and boolean operations
(\not, \and, \or, and so forth) should be added. It
should be possible to write "real conditionals".

Doing any type of arithmetic in is a bit
of a pain, so I would like to see something which
would allow me to write, for instance:

Relational operators #, 2 , 5 should be made avail-
able for register arithmetic.

Box computations. It should be possible to access
the badness of a box stored in a box register.
Furthermore, it should be possible t o access and
manipulate each element of the horizontal or vertical
l ist of a box on an individual basis. In other words,
I would like to see a generalization of primitives
like \ l as t sk ip and \ lastpenalty. For instance, if
\ lastpenal ty is zero, then this means either that
the last item was a penalty of zero, or was not a
penalty. I would like to see, therefore, a reliable
way to learn what each item is, not just the last
one.

In particular, I would add primitives which
allow access to the dimensions of the lists and l i t
elements of boxes. One reason the insertion of
change bars with a dvi file processor is so easy (see
Bechtolsheim [1990c]), but so difficult in m, is
that there is no way to access this information.

I personally would remove the restriction which
permits \vcenter to be used in math mode only.

Math mode. Believe it or not: I found someone
who wanted more than three different fonts per font
family in math mode. I am not sure I concur with
this.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 411

Stephan v. Bechtolsheim

Concluding remark
is a great product. It is so wonderful, powerful,

and flexible, it's worth all the effort required to
learn it.

Bibliography
Bechtolsheim, Stephan v. "Using the Emacs Editor

to Safely Edit l'@ Sources", w n i q u e s 7, pages
195 - 202, 1988.

Bechtolsheim, Stephan v. T&$ in Practice. New
York: Springer, 1990a

Bechtolsheim, Stephan v. A T&X Preprocessor and
a make related Utility. West Lafayette: Integrated
Computer Software, Inc., Report 90-1, 1990b

Bechtolsheim, Stephan v. A dvi File Processor.
West Lafayette: Integrated Computer Software,
Inc., Report 90-2, 1990c

Knuth, Donald E. The W b o o k . Reading, Mass.:
Addison-Wesley, 1984.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Textbook Publishing - 1990 and Beyond

Mimi L. Lafrenz
Electronic Technical Publishing, 2906 N. E. Glisan St., Portland, Oregon 97232
(503)234-5522

Abstract

Production of college texts and reference books is a natural
for rn, yet the commercial publishers are slow to understand,
and therefore accept, the power and versatility of the program.
Some book publishers are utilizing authors' rn files for creation
of camera-ready pages, while others will rarely consider the
possibility. The resistance of commercial users to divulge
macros, tricks, and techniques has impeded the acceptance of
rn by commercial publishers.

We will explore the training and support of authors and
publishers, and the impact of openness in the technical realm.
Only through shared objectives will we be able to create the
best environment for TEX to flourish in this decade.

Introduction

The process of publishing textbooks, especially
college-level, scientific, or technical textbooks is
rapidly changing. Advances in technology - laser
printers, standard page-description languages and
available fonts - are largely to thank for the broader
use of computing, or electronics, in publishing. With
the emergence of computing as an integral part of
the production of book pages, broader issues are
brought to the surface - issues that will ultimately
shape the way book production is handled.

Eefore looking to the future, we consider the
past and present, to see how they determine our
perspective. The future of Q X , and all technology,
lies in its roots. To understand the differences
between scientific and commercial perspectives, is
to understand the future of both. The company we
are building comes from the scientific side; however,
we are convinced of the long-term commercial
benefits.

Throughout this paper we have referred to TEX
in the general sense, including all derivatives such
as A M S ~ , WQX, and so on.

History

ETP is a venture that began when a group of
key people from a former company launched a
typesetting service bureau, exclusively accepting
electronic manuscripts. t ro f f was the focus, and
the production group consisted of two programmers
who spent most of their time cranking out the

same UNIX documentation set for many of the large
hardware manufacturers across the country.

ETP's entry into textbook composition came
when Holt, Rinehart & Winston had an author
under contract who was guaranteed that his elec-
tronic files, created with U ~ ~ x / t r o f f , would be
used in the production of the book. That was a
difficult guarantee to keep in 1985, since there were
few services offering t ro f f programming and page
formatting. The people at Holt went straight to
the source - AT&T Bell Labs - for the name of a
service that could bring this project to completion.
We were the leading source for UNIX documentation
composition; they called on us. We had no idea
how complex good page makeup could be when we
agreed to take on our first textbook project.

We had no formal training in the publishing
and typesetting conventions related to the proper
ways to create a page. Only through the publisher's
patience and willingness to work with us were we
able to complete the book. They helped us develop
our understanding of the numerous details involved
in producing high-quality technical type. The
project took six months to complete, with much
time spent building special characters to match
editing marks that we were not familiar with, and
similar fiascos. The book was published, and did
well. It was in the second printing within one year,
and continues to be a popular text.

With each successive textbook and exposure to
dozens of publishers, we developed and honed the
craft of technical typesetting. More importantly,

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 413

Mimi L. Lafrenz

we dove deeper into the typesetting languages and
programming aspects to harness the inherent power
of t ro f f .

The Move to
After a few years of experience with t r o f f , an
emerging publisher asked us to look at the possi-
bilities of using m . Thanks to good fortune, our
technical director had studied under Pierre Mackay
at the University of Washington. Dan Olson un-
derstood 7$X and gladly accepted the challenge,
launching our first m- tex tbook project in 1987.

Something was very different. Pages were
being created faster and more beautifully with
w. There was hardly a comparison with t r o f f
when the hours for page-makeup were tallied. m
books went through the plant faster and had fewer
mistakes. We were really onto something here, yet
at times there were frustrations that made it hard
to continue.

Learning without teachers. The first obstacle to
overcome was lack of experience with the program
and its documentation. Dan's exposure to w
made him the sole source in the company for
training, which occupied his time for years to
follow. As Dan discovered new techniques with
m , he shared them with the production group,
and vice versa.

There were many times when it seemed im-
possible to meet the publishers' strict demands for
page composition with this program. When hours
of programming time were demanded for physically
simple tasks, we would resort to the x-act0 macro
and have it done in minutes. Of course there had
to be two or three projects with excessive program-
ming hours to lead us to the necessity of a macro
made of hardware. Building the company without
a role model, and very few mentors in the field,
made us resourceful. The addition of TEX to our
service-line could have been fatal, had we not just
gone through similar experiences with t r o f f . TEX
was a major step forward.

Documentation. The w b o o k is a good refer-
ence manual, not a good user's guide. There are
books and periodicals available, but they require
research and reading. The common lack of desire
or initiative to research a program has inspired us
to build a resource manual, one chapter at a time,
to guide the user in understanding w .

Training. The development of internal training
programs is an expensive, arduous task. The lack
of internal training is even more expensive. As

the old saying goes 'Think education is expensive?
Try ignorance.' We spent our energies on a
variety of training programs before implementing
the current program. The most efficient training
methods have been created by production workers
who have developed a depth of knowledge in special
areas. The use of A Gentle Introduction to m, by
Michael Doob, has become an integral part of our
early training for new users. (Thanks Michael!)

Better, Cheaper, Faster

Better, cheaper, faster. That is all the publishers
expect from an electronic manuscript, so what's
the problem? Well, let's address these desires
individually.

Better. The quality of mathematics set with m
is indisputable. The quality of page formatting that
can be achieved using m , albeit with effort, is
among the best. Dr. Knuth built in many features
that are simply unavailable, in their complexity,
with any other program or system.

The quality of math set in an Adobe font with
TEX is another story. We have seen the attempts to
incorporate other fonts into TEX files succeed and
fail. The advance of composite fonts will change the
look of 7Q$ math. A major development project
will eventually be undertaken, fine tuning character
widths to automatically give the beautiful spacing
inherent in the use of Computer Modern fonts. The
accepted approach, in 1990, is the commingling of
Times Roman and Computer Modern Math Italic
on one page. It does differentiate the math variables
from any other italic, but still leaves a lot to be
desired in the ~ s t h e t i c quality of the page.

The basic improvements has brought to
computer-aided publishing should not be over-
looked. The final product is better because of
features like automated page bottoming, kerning,
and the extra care w puts into every paragraph
while formatting pages.

Cheaper. The general feeling is that the manu-
script must be ready to typeset if the author has
input all of the information, so the labor extended
to format the pages will be minimal. The main
point that the publishers and compositors often
miss is the condition of the electronic files prior to
the beginning of the composition process.

Quite often in college textbook preparation
authors will employ students, clerical staff. even
family members, to input the chapters as they are
written. It is not unusual to see a 17 chapter book
input by 5 or 6 people with different styles, macros,

414 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Textbook Publishing- 1990 and Beyond

and contradicting definitions. In fact, we have
produced several books in which 3 or 4 programs
were used to compose the original files. It was
usually easier to strip the word-processing codes
and convert the trof f or other languages into TEX,
in order to produce a book consistent through each
chapter and section. Reducing expense is difficult
in this scenario. The publisher might have done
better to send it overseas for keyboarding.

As we look into the future, we will see al-
ternatives to this haphazard system of manuscript
preparation.

Faster. In actual production turnaround, faster
is relative to company size, skill, seasonality, and
organization. The amount of time required to
format a book can, in some cases, be significantly
greater than the time required to keyboard and
traditionally typeset the text depending on the
quality of the programs used and on the attention
to detail by the author. Publishers who understand
the impact of preplanning on the schedule and
total expense of a project will recognize the need
to negotiate with vendors for better tools and
training to simplify and improve the process of
book production.

Communication is the Key
The ability to understand and evaluate information
and make decisions is the key to a successful
project. Developing an understanding between any
two parties is the biggest challenge of all, and there
are several links in the publishing communication
chain.

First, the author and associated support group
must set guidelines and procedures for the project
which will eliminate waste in the final stages of
pagination. For example; coding elements by con-
tent (\example{. . .)) rather than by appearance
(\bigskip {\bf.. .) \medskip). Next, the author
must supply the publisher with complete informa-
tion about the manuscript, media, and system of
creation. The publisher must understand the infor-
mation being passed on to the compositor and/or
artist, since decisions must be made at this crucial
step which will affect the results. A progressive
publisher, like Addison-Wesley, will research the
tools and technicians and have informed individuals
guiding authors and preplanning composition. This
approach allows growth for all who share the ideas
and thereby broaden their own experience. The
publisher must then communicate with the com-
positor, artist, printer, bindery, and distributor.
The jargon of book manufacturing has changed

little over recent decades, with the exception of
composition, art, and prepress. These are areas of
rapid advancement in technology, and only through
continuing study can one be up-to-date on all of
the current developments. A basic understanding
can, however, easily be gained that will allow an
individual to converse and make decisions based on
the technical information being supplied.

A Fine Line
Quality communication is not the sole responsibility
of the publisher or author. The vendors doing the
actual production of the book can improve the
entire process by accepting the challenge of opening
communication channels with clients. There is
resistance to openness in the commercial arena,
for fear that sharing knowledge will take away a
competitive edge.

A company works for years at understanding a
product or method, and may believe that sharing
the technology with the marketplace would be
placing the company's future in jeopardy.

The only thing a company has to sell is its
technology. Pieces, parts, and production can be
copied, but the intangible understanding must be
developed. This is the reason private-sector gurus
will not divulge macro source code; it is their
security. With careful consideration and planning,
tools and information can be made available to
the marketplace. Tools which enhance the entire
process are being released now. Just as Knuth and
the AMS developed the most powerful typesetting
program and turned it over to the public, we should
be open minded about how our technology is used.
It is a fine line-between industry for profit and
R&D for the advancement of science-the most
exciting line to walk.

The Next Generation
Looking to the future, we see trends developing in
publishing, technology, and services. Predicting the
outcome of developing trends is risky, but this is
the approach we have chosen to develop the most
efficient and effective publishing system possible.

is a good gamble.

Training. The training of authors, editors and
publishers is a vital step in fully utilizing the tools
and services available. But who is responsible for
this training program, and exactly what should it
cover? The answer is obvious. we are all responsible
to teach each other everything possible. This is the
investment required to bring results. Investing time

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 415

Mimi L. Lafrenz

and materials now is essential to bringing greater
understanding and opportunities in the future.

One of the objectives in our program for
training authors and publishers has been to foster
a basic comprehension of computing. The use
of electronics in publishing will continue to grow.
Having the users of any product of electronics
understand how the product is derived and applied
will accelerate the growth. The course needed to
gain this grasp takes less than a day.

Technology. The evolution of tools used for pub-
lishing will continue. Hardware and software ca-
pabilities increase while the prices decrease. Tools
are available to a greater number of people, and are
easier to use.

The trend we see unfolding in the technology
of composition is an increased involvement by the
author in the initial formatting and edit updating.
Some authors create elementary graphics, some
excel in their comprehension of technical illustration
and desktop graphics programs. A greater number
of authors submit camera-ready pages each year,
fully formatted in a variety of ways.

The problem of authors thinking they are
designers is common today. With attempts to
separate content from appearance, like SGML and
ETPtex, authors are less likely to work on the
design. Publishers provide macros fully capable of
page formatting, when they can. This is a new
development, it should have an impact on the way
books are produced.

Quality. It is up to the publisher to control the
quality, and it is often not easy to persuade the
author to conform to editing marks or specifications.
Herein lies the frustration most common to those
currently involved at this level: What can be
sacrificed or improved in maintaining good author
relationships, budget, and schedule?

Quality is the only factor left. It suffers in most
cases. But college textbook publishing is a market
driven, scientifically exact process demanding the
highest quality. The ancillary products, guides,
manuals, and such, experience an improvement in
quality when an author has utilized a desktop or
computer aided publishing system, rather than dot
matrix or typewriter. Ancillary products have
historically been composed by the author.

Preplanning to optimize production. To pro-
vide authors with tools capable of meeting publish-
ing specifications, without the burden of years of
developing the understanding necessary to produce
quality pages, we are developing macro programs

for publishers. These are built to common specs,
allowing for minimal variation in the design.

In 1988 we first released ETPtex, a macro
set designed to produce double spaced manuscript
output, with special features like callouts (elemental
names) in the margins and floating figures. ETPtex
overlays (as a front end), all versions of 7JjX and
is simple to use. Macros are named to match
the specifications, and conform to the specs and
house standards -when run through the version of
the program kept at ETP. Frequently, the design
has not been decided during the writing phase
of the book. The macros give authors freedom
to write without concern for pagination. The
involvement of Prentice-Hall was very important in
this development project. They have supported
our growth in many areas, providing guidance and
authors to work with during every stage.

Services like ETP will broaden their range
and be available for technical consultation, macro
writing, production, and training. The liaison work
between the author and publisher is being handled
by total concept houses, or services that act in a
freelance capacity to bring the editing, design, and
production under one roof. A total concept house
able to converse technically with the author and
publisher, in their respective languages, will bridge
the gap until open communication ripples through
the industry and training is commonplace. This
will happen much sooner than some anticipate.

Summary
The publishing of textbooks, reference books, and
periodicals, is transforming into a process of com-
munication. Pioneering companies and individuals
realize the benefits of utilizing 'IjEX to improve
quality, turnaround, and expense. With rapid ad-
vances in so many areas, we must realize that our
understanding, support, and use, of these advances
will shape the next generations of publishing. The
use of will provide freedom not possible with
any other platform.

We believe that helping each other will ben-
efit all of us, as we approach a new century of
information management.

Gratis
For a free copy of ETPtex, or other information,
please write or call ETP Services at the address at
the beginning of this paper.

416 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Diagnosing T$jX Errors with a Preprocessor

David Ness
803 Mill Creek Road, Gladwyne, PA 19035
215-649-3522.

Abstract

TEX finds our errors with ease: however, it sometimes reports
them in ways that are hard to understand. Generally this is
because we have confused it by unintentionally misrepresenting
something. For example, if we do something as simple as forget
an escape on a dollar sign 'l&X will probably give us some
obscure diagnostics about math mode. This paper discusses
some preprocessors that can warn us about potential problems
before we submit our files to TEX. These programs may be of
particular help to new users.

Purpose

errors can be difficult to diagnose, particularly
for the new user. is very flexible and general. It
provides a rich world for developing and describing
typesetting processes. The very richness, however,
of this world - and its flexibility and generality -
seems to work against the new user, particularly
by making it hard to see the cause and cure for
problems. The suite of programs described in this
paper attempts to deal with such problems.

The Overview

Instead of writing one (complex) program to help
diagnose T)$ errors, we wrote a number of different
programs, each of which could deal with one, more
restricted, problem domain. The results of these
separate analyses can be integrated into a single
picture. By separating parts of the error analysis
process we allow for independent evolution, and
people who have only one particular problem need
use only the module appropriate to it.

The modules that comprise this suite have the
following functions:
TEXCHECK checks for some common 'l&X errors,

particularly those made by new users. For
example, this module looks for unescaped dollar
signs and percent signs (i.e., $, % instead of \$,
\%).

TEXBRACE takes the input file and keeps careful
track of the use of left and right curly braces. If
the left and right braces aren't properly balanced,
the locations of those not matched are reported.
The source file is also rewritten (temporarily) in
an attempt to make brace problems easy to spot.

TEXLOG analyzes the log that results from running
m . This program, written in AWK-WEB, is still in
a preliminary state and is not described further.

TEXERROR merges the results of running TEXCHECK,
TEXBRACE and (when it is ready) TEXLOG, along
with the original source file, into a new source file
that can be edited to correct the mistakes and
remove any error comments.

TEXFIND is an experimental program designed to
help users relate their input source to the output
obtained from a TEX run. This aid is quite
distinct from the others discussed here.

Organizing a Source File
Users, particularly new users. can find it helpful
to adopt some discipline in organizing their source
files. This will prove useful when diagnosing and
fixing errors. As one gains comfort and familiarity
with m, this discipline can be relaxed, but at
least in the early months it is wise to adhere to
some simple principles.

Keep macro definitions in a separate file, to be
incorporated by an \ input command; this makes
life much simpler. Modifications to macros as they
are debugged represent an effort quite different from
that required to modify the basic text. If these
problems are isolated, it is easier to see what's going
on.

Some of the diagnostic help provided by the
programs in our suite is rendered more effective
when the source is split into logical pieces. For ex-
ample, the TEXCHECK program flags all occurrences
of unescaped number signs (#). Generally these
don't occur in normal text, but they are a regular

TUGboat, Volume 11 (1990), No. 3 - Proceedings of the 1990 Annual Meeting 417

David Ness

part of macro definitions. If the macros are in a s e p
arate file, which we don't pass through TEXCHECK,
then no confusing diagnostics will appear.

TEXCHECK World-view
TEXCHECK was written to warn about potential
problems. Since it is preferable to be warned too
often than not often enough, occasionally warnings
are generated about things that would be found
legal if a more substantial analysis of the Q,X
source were made. The source file is not analyzed
in a deep way, so complex things like mode shifts
and macros will be missed.

The idea of creating a L i n t for 7&X was rejected
because of the complexity of Q,X syntax. After
all, in Q,X it is an easy matter to redefine nearly
everything, and keeping track of all of this would
rival writing the m processor itself!

We gave up on the idea of doing the job
perfectly and may have gone to the other extreme.
Our principal goal is simplicity, in particular we
hope to share these ideas with others, so that
feedback will help us to develop them further.

TEXCHECK warnings. TEXCHECK warns about a va-
riety of possible errors. Most of the warnings are
designed for new users, but even old hands at l$X
may find a pass through TEXCHECK is worth the
trouble, particularly if the source file was captured
by someone not too familiar with 7&X.

Here is a list of warning messages which TEX-
CHECK may issue:
Angle brackets probably need to be i n \tt font.

Many Q,X fonts place the upside down exclama-
tion point and question mark in the ASCII table
where the angle brackets are in the \tt font. This
warns about all angle brackets in the text, unless
they are preceeded on their line by a percent sign
(and thus are probably in a comment).

Someth ing m a y be missing t o avoid end-of-sentence
spacing.

7&X has some sensible, but complex, rules about
when it puts in end-of-sentence spacing. This
warning indicates that T)$ will put end-of-
sentence spacing after a particular period, and
TEXCHECK thinks it may be inappropriate (for
example, on the period after 'Dr').

Perhaps there should be end-of-sentence spacing
here, and there won't be.

We might also have a place where a capital ahead
of a period blank might have suppressed end-of-
sentence spacing when it shouldn't have. This
checks for that situation too.

E m - and En-dashes generally abut the words o n
ei ther side.

English typesetting specification suggests that
dashes abut the words on either side. This warns
about what appears to be contrary usage.

Number-s igns are generally only in macro defini-
t ions.

Number signs are common in normal text so
they may sometimes be entered without being
properly escaped. Since they normally represent
arguments to macros in 9&X, diagnostics can be
confusing. TEXCHECK warns about them indis-
criminately, i.e., it makes no attempt to see if the
unescaped # is being used legally (for example in
a macro definition).

Double quotes should go away.
9&X usage calls for two left quotes and two
right quotes, which become left double quote and
right double quote. While the typewriter double
quote character will produce the Q,X right double
quote, it probably shouldn't be used at all for
quotes in a 7&X source.

Ampersands usual ly perform tab skips.
Ampersands generally represent tab stops in
alignments. This warns about all unescaped
ampersands because error diagnostics that result
from ampersand misuse can be confusing.

Underscores and carets generally are sub- and super-
scripts in m a t h mode.

Sometimes underscores and carets creep into nor-
mal m text. They can generate confusing error
messages there because they ordinarily represent
sub- and super-scripts in math mode. This mes-
sage will appear when underscores and carets are
detected not following a dollar-sign that might
indicate a previous shift into math on the line. In
TEXCHECK no attempt is made to detect whether
we are in math mode, which is complicated to
determine.

'% ' preceded by digits probably should be escaped.
We often forget to escape percent signs. This
can cause text to disappear. This warning raises
a question about situations where a number is
followed by a percent sign (perhaps separated by
blanks), without the percent sign being escaped.

Check t o make sure that t he thing following the '%'
sign i s a comment .

As an alternative, if the first thing following a
percent sign (after some optional blanks) isn't
an upper case alphabetic character (that might
begin a comment), then we also raise a question.

418 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Diagnosing ?$X Errors with a Preprocessor

The dollar sign indicates a shift to 'math'. Was
that intended?

If a dollar sign happens to be followed by a
number, it is possible that a real dollar amount
was intended, and an escape forgotten. This
message will, of course, improperly appear when
something introduced in math mode begins with
a number, but this is a smaller price to pay.

Running TEXCHECK. TEXCHECK can be executed
with a number of switches. If none are specified it
will, like the other modules described here, prompt
for the appropriate inputs.

The switch -I x tells TEXCHECK to use 'x' as
the input file. -0 x names 'x' as the output file.
If the switch -F x is used, then the input file is
assumed to be 'x.TEX' and the output file will be
'x . CHK'.

TEXCHECK can issue reports at five different
levels. The level of reporting is indicated with a
-R n. Level 3 provides the greatest amount of
descriptive information while level 0 provides the
least. Level -1 is used when the output of TEXCHECK
is to be fed into TEXERROR.

TEXBRACE Functions

The purpose of TEXBRACE is to help us find errors
in curly-brace structure. These pose particularly
nattering problems for 'QjX because a missing brace
will often cause ll&X to misinterpret some element of
the structure and can create obscure error messages.

TEXBRACE performs two functions. The easier
to understand involves finding the lines on which
unmatched left curly braces occur. A list of line
numbers for unmatched braces is made by the
program and as corresponding right braces occur
this list is adjusted. If the list is not empty at
the end of the file, it shows where the unmatched
braces were. TEXBRACE will also report on excessive
right curly braces if they occur, but this is generally
a less difficult problem.

The other function of TEXBRACE involves cre-
ating a copy of the input file in a form that will
emphasize its brace structure. When writing this
copy, TEXBRACE replaces returns with blanks, thus
producing (impossibly) long lines of text; however,
each time a brace is encountered we drop to a new
line and indent (for left braces) or outdent (for right
braces). The file that results from this isn't good
for anything but looking at brace structure, but any
problems with this structure then turn out to be
obvious.

Running TEXBRACE. TEXBRACE can be executed
with a number of switches. The switch -I x tells
TEXBRACE to use 'x' as the input file. -0 x names
'x' as the output file. If the switch -F x is used,
then the input file is assumed to be 'x. TEX' and the
output file will be 'x .BRC'.

TEXBRACE can issue reports at two different
levels. The level of reporting is indicated with a
-R n. Level -1 is used when the output of TEXBRACE
is to be fed into TEXERROR. Level 0 provides output
to be read by the user. At level 0 the entire text of
the file is rewritten in a way that emphasizes brace
structure. At level -1, only the error messages are
written.

TEXERROR Functions
TEXERROR takes the output of TEXCHECK, TEXBRACE
and (when ready) TEXLOG and merges them with
the original source into a new copy of the file. Each
of the routines identifies the line number on which
potential errors have been reported and this module
takes all messages appropriate for each line and
places them in the output file just following the line
in question.

The lines generated by these programs are in
a format appropriate for 'QjX comments. TEXERROR
also arranges to have the first line of a block of
error messages begin with "%ERRORn and end with
"%ERROR-MERGE End". This makes them easy to
find with a text editor.

Running TEXERROR. TEXERROR can be executed
with a number of switches. The switch -I x tells
TEXERROR to use 'x' as the input file. -0 x names
'x' as the output file. If the switch -F x is used,
then the input file is assumed to be 'x.TEX', the
brace error input file is 'x .BRC', the check error file
is 'x. CHK' and the log error input file is 'x .ERL'.
The output file will be 'x. NEW'.

TEXFIND
TEXFIND is an experimental program designed to
act as a prototype for a 'l&X error facility that
would allow the user to associate the input source
file directly with what is seen in the output.

TEXFIND takes each piece of recognizable text
in a document and follows it with a ll&X call
\spc [m , n] where m represents the line number and
n the column number of the source file line that
began the word in question. Since it is very difficult
to know anything about the actual effect of a
macro without profound analysis, only first level
text is recognized by TEXTFIND.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

David Ness

Once the \spc [. . . I markers have been placed
in a source file, that file can be run through rn
with a definition of \spc [. . . I that will cause
\specia l commands to be written into the D V I file.
This information is then available to display drivers
able to use it to relate things being displayed back
to their original locations in the source file.

An important modification needs to be made
to a source file before it is sensible to run TEXFIND
on it. There are situations (in the middle of a
macro definition, for example) where inserting the
\spc [. . . I markers might prove disastrous. For
that reason a special form of rn comment, %!, is
used to toggle \spc generation on and off. TEXFIND
begins operation with \spc generation o f f , so the
source file should be modified by putting a '%! ' on
the line prior to the one on which the text begins.
At the moment there are no drivers which will
allow us to see the markers, so this represents an
experiment in its earliest stages.

The Implementat ions

The programs described here are implemented in
C-WEBS. The language we used is Norman Ramsey's
implementation via SPIDER. The copyright on these
WEBS has been assigned to TUG, the 7J$ Users
Group, so that they may be freely exchanged
in a community as wide as possible. We hope
that feedback from this community will result in
improvement of these programs.

Relationship to Text Editors

The output of TEXERROR can be processed by any
ASCII oriented text editor. A good editor may deal
effectively with the kind of messages that TEXERROR
produces.

For example, using the old standby PE2, a
definition like:

d a-e = [l/\%ERROR/] [mark l ine]
[l/ERROR-MERGE End/] [mark l ine]

makes it possible to locate the next block of error
messages and highlight them simply by typing
<ctrl>-E. The normal editor function <ctrl>-D
will then delete this block of error messages. Thus
it is possible to page through the file with successive
<ctr l>-Es and <ctrl>-Ds.

The TE. BAT File

The programs in this suite work together conve-
niently. One easy way is to construct a DOS .BAT

file that calls them in sequence. The following
simple file TE .BAT does this:

@ECHO OFF
REM "<$TeX Error Analyzer - Ver (I)$>"
TEXBRACE -f %I -r -1
TEXCHECK -f %I -r -1
Echo TEXLOG doesn't ex is t yet
TEXERROR -f %I
DEL %I .BRC
DEL %1 .ERL
DEL % i . C H K

Here the programs in the suite are executed in
sequence, and the results are fed into the TEXERROR
run where they are merged. Execution of TE
filename results in a file filename .NEW which
should be copied over the original f ilename.TEX
after corrections have been made and it is decided
that the new file is better than the original.

Experiences

A first. and rather pleasant, surprise was that these
programs, particularly TEXCHECK and TEXBRACE,
proved to be helpful to long time users of rn, as
well as to novices. since both groups still make mis-
takes in files which these programs isolate quickly
and without much fuss.

The programs have also proved useful by al-
lowing sophisticated users to have texts typed
by typists not very experienced with m. The
rules about typing \%, \$, \& instead of %, $. & tend
to be forgotten until these things have been typed
many times. With these programs it doesn't seem
to matter whether they are remembered, since it's
so easy to find these mistakes and fix them.

Acknowledgements

The ideas presented here resulted from discussions
involving S. Bart Childs of Texas A&M University,
Alan Hoenig of John Jay College, and the author.
Suggestions from many others with whom we have
discussed this idea over the past six months are
gratefully acknowledged.

420 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Increased TjjX Efficiency Using
Advanced EDT Editor Features

Linda Williams & Linda Hall
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388
615-455-0631. B i tnet : wi l l iamsQutsiv1 B i tnet : ha l lQuts iv1

Abstract

?l$,X is implemented on various computer systems often with
little or no consideration given to the time saving quality of
an efficient editor. For both the novice and expert 'l$,X user,
employing advanced EDT editor features greatly enhances the
efficient use of m. Because there are volumes describing these
various tools, it becomes necessary to reduce this vast amount
of material to a manageable subset. This paper describes
selected EDT features, such as editor initialization files and
other commands which, when mastered by the user, enhance the
editing power of w.

Introduction

This paper describes a text editor. EDT, supported
by a VAX 111785, running the VMS operating sys-
tem. Under the name EDT+, this versatile editor
will also operate under MS-DOS (2.0 or higher)
or UNIX on Ardent, AT&T, Celerity, Convergent,
DEC, Encore, Gould. Hewlett-Packard, IBM, Inter-
graph, MIPS, SUN, and many others.

Because skill levels in using EDT as well as
other editors vary greatly, from novice to expert,
advanced editor features are often overlooked. Al-
though there are volumes of documentation on
editors, with help files and computer-aided instruc-
tion, learning about these advanced features often
occurs by passing information from user to user.
It is the purpose of this paper to continue that
tradition by describing three fundamental areas of
EDT, namely, 1) EDT line-mode features. 2) EDT
screen-mode keypad features, and 3) EDT initial-
ization features. Other editors assign similar type
names to their editor features; keyboard macros,
learning keystrokes, or recording keystrokes. What-
ever your editor, the message is still the same:
when an efficient editor is mastered, knowledge of
its features and capabilities give the user a fast and
powerful method of editing.

EDT Line-mode Features

When working within a document, EDT offers the
user two fundamental editing modes, line-mode and
screen-mode. (Screen-mode will be explained in

the next section.) When the edit session begins,
EDT starts by presenting *, the line-mode prompt.
At this prompt it is possible to use many line-
mode commands or to execute a specific line-mode
command called CHANGE:

* c (carriage return)
This particular command allows for full screen
editing capability (screen-mode). Other commonly
used line-mode editor functions for creating ?l$,X

other data files are:
carriage return - present the current line,
TYPE [range] - display the specified lines on the
terminal,
SUBSTITUTE-replace the next occurrence of
an old string with a new string over a range of
specified lines,
WRITE [range] -write a buffer or a segment of
a buffer to a different disk file,
DELETE [range] - delete a line or range of lines,
EXIT - end the editor session and save a copy
to the MAIN buffer,
QUIT-end the editor session without saving
any changes,
CHANGE [line #] -change to screen mode at an
optional location.

Using the key sequence C t r l Z will evoke the
line-mode option * anywhere within the text for
use of the above commands. GOLD (PFI) and 7
(keypad), in screen-mode will also prompt for line-
mode options. Specific words and numbers can be
used as qualifiers in conjunction with SUBSTITUTE
and DELETE. These options allow the user one more

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 42 1

Linda Williams & Linda Hall

level of choice to prevent possible damage to the
file.

The command
*sub/Tex/\TeX\/wh/query

causes the string of letters Tex to be replaced by
the string \TeX\ throughout the whole (wh) file
and prompts with a question mark to verify the
operation on each line displayed. Possible responses
to this option are yes (y), no (n), or quit (q).

The command
*del 121:131

deletes lines 121 through 131 of the file.
The CHANGE command makes rapid correction

of errors much easier since Q,X error messages are
given by line number. For example, if an error
was detected at line 102 in the rn data file, it is
possible to use the command

*c 102

to place the user at the point of the TFJ error.
Line-mode commands provide sufficient editing

power to create most TEX documents; however, by
employing both line-mode and screen-mode features
time-consuming procedures can be reduced. The
next section will explain how screen-mode com-
mands reduce the input for a given operation from
a line-mode command word, possibly from 4 to 7
keystrokes to a keystroke sequence of one or two
keys. This keystroke reduction enhances editing
power.

EDT Screen-mode Keypad Features

PAGE SECT

1 EOL WORD

CHNGCASE DEL EOL A
0

LlNE

OPEN LlNE

PF3

FNDNXT

FIND
11

3
APPEND

REPLACE

9
6

CUT

PASTE
6
3

CHAR

SPECINS

3

SELECT

RESET

18

a
DEL L

UND L
17

-
DEL W

UND W

18
2

DEL C

UND C
19

ENTER

ENTER

SUBS

d

The figure illustrates the EDT screen-mode
keypad layout with associated keypad commands
for VT100-type and PC enhanced-type keyboards.
These EDT features are also available on other
keyboards; specific key assignment sequences may
vary.

Most keypad keys have two editing functions
associated with them, primary function commands
and alternate function commands. The primary
function commands, not highlighted, use the indi-
cated key only. The alternate function commands,
highlighted, use the GOLD key (PFI) in conjunc-
tion with the indicated key to perform the desired
commands.

These keypad functions can be broken down
into three groups: 1) movement, 2) delete and
recover, and 3) key definitions and redefinitions.
The following three subsections discuss this in more
detail.

Movement. Movement refers to three possibilities,
1) the general movement of the cursor, 2) reposi-
tioning the visual display to another segment of the
file, for example, the beginning or the end of the
buffer, and 3) the movement of the cursor to the
location of a specific text string.

For general cursor movements, the 1 (WORD) on
the keypad moves the cursor from the beginning of
one word to the beginning of another. The 2 (EOL)
on the keypad moves the cursor from the current
cursor position to the end of a line.

For repositioning the screen display, the se-
quence of GOLD (PFI) and 4 (keypad) advances to
the bottom of the text and GOLD (PFI) and 5 (key-
pad) advances to the top of the text. For moving
the cursor to a specific text string, the command
FIND uses GOLD and PF3. The command prompts
the user with Search f o r : at which point the user
types the desired string and hits 4 (BOTTOM) or
5 (TOP) to indicate the direction of the search. The
cursor will then be moved to the first occurrence of
the specified string in the indicated direction. Using
the PF3 (FNDNXT) command will search for the next
occurrence of the previously specified string.

Delete and recover. Delete and recover refers to
two possibilities, 1) the complete removal of text,
and 2) the movement of sections of text from one
location to another. Deletion can be thought of in
terms of the entities that the editor understands, the
character, the word, the line, and a section of text
specified by the SELECT command. In each case, the
system associates a buffer with each of these types
to hold the given removed entity - character, word,
line, or section. Consequently, there is a delete

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Increased Efficiency Using Advanced EDT Editor Features

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

character buffer, a delete word buffer, a delete line
buffer, and section buffer (specifically called the
PASTE buffer). Since each associated buffer contains
the last piece of text removed, this fact permits the
recovery of that same text removed by that last
command.

For the complete removal of text, there are
three commands: 1) DEL C (keypad ,)-deletes the
current character under the cursor, 2) DEL W (keypad
-) -deletes from the current cursor position to the
beginning of the next word, 3) DEL L (keypad
PF4) -deletes text from the current cursor position
to the end of the line. The main purpose in using
these keypad commands to delete, instead of the
delete key, is the previously stated advantages of
the associated buffers. Using the GOLD key (PFI) in
conjunction with the specific delete key undoes the
specific operation. For example, GOLD (PFI) and
PF4 recover the last deleted line.

For the movement of sections of text from one
location to another, the CUT-and-PASTE operation is
used. In conjunction with the SELECT operation,
a section of text can be marked and either deleted
permanently or moved to another portion of the
buffer to be PASTED into the desired location. This
is often useful in using similar constructs. Since
CUT and PASTE can also be done between multiple
buffers, this offers additional power in copying
previously successful sequences of TEX commands
which have produced output in the desired form.

Key definitions and redefinitions. An exten-
sion of the power of EDT's screen-mode keypad
features, key definitions and redefinitions enable
the user to create, redefine, or relocate the opera-
tion of a previously defined or previously undefined
key. Using two line-mode commands, SET and
DEFINE KEY, the user is able to design complex,
tailor-made keystroke sequences to perform the de-
sired operation. The next section will illustrate the
use of initialization files containing these complex
sequences which can broaden keypad editing to
encompass the entire keyboard.

EDT Initialization Files
When a user starts an editing session, EDT searches
for a system-wide initialization file. If no system-
wide command file is found, EDT then looks for a
file (ed t i n i . edt) in the default directory. Because
initialization files are not required, this feature's
potential power is often overlooked by the less
experienced user.

The edt i n i . edt file is allowed to contain only
line mode commands, previously stated above. The
most common commands are SET and DEFINE KEY.
These two basic commands allows users to customize
their editing environments. The keyboard can
be rearranged for specialized editing functions for
individual preference reducing errors and allowing
for more advanced application development.

A novice's initialization file may simply contain
one line - SET WRAP 75 - forcing words hitting the
75 column to wrap to the next line. However, as
expertise with the editor grows, so does the size and
functionality of the initialization files. The following
presents a fully commented initialization file which
can be used in the creation of documents;
these specific commands can be implemented inde-
pendently or in conjunction with other initialization
files:

! Start-up commands fo r editor EDIT/EDT
(VAX/VMS)

!
! Key def in i t ions fo r EDT commands:
! se t wrapping t o 75 columns
SET WRAP 75
! s e t fu l l -screen edi t ing mode (KEYPAD MODE)
SET MODE CHANGE
! make searches dist inguish between uppercase

and lowercase characters
SET SEARCH EXACT
! t o use with slow modem at home
DEFINE KEY CONTROL P AS "EXT SET LINES 6; SET

CURSOR 1:4."
DEFINE KEY CONTROL Q AS "EXT SET LINES 22;

SET CURSOR 7:14."
! B -- back t o main buffer
DEFINE KEY CONTROL B AS "EXT EXTERN."
! F -- f i nd a f i l e t o be put i n buffer
DEFINE KEY CONTROL F AS "EXT INCLUDE ?'Enter

f i l e name: ' BUFFER EXTERNAL."
! includes header f i l e into main buffer

automatically
DEFINE KEY CONTROL U AS "EXT INCLUDE

header.tex BUFFER MAIN."
! includes f i l e typed at the prompt

automatically into main buffer
DEFINE KEY CONTROL I AS "EXT INCLUDE ?*

' Insert f i l e : ' . "
! R -- returns t o f i l e i n buffer
DEFINE KEY CONTROL R AS "EXT RETURN. "
! s e t screen t o 132 columns
DEFINE KEY CONTROL W AS "EXT SET SCR 132."
! se t screen t o 80 columns
DEFINE KEY CONTROL E AS "EXT SET SCR 80."
! change case of f i r s t l e t t e r of current

word (l e f t of cursor)
DEFINE KEY 8 AS "-W +CHGCC -C +W."
! move cursor t o next sect ion (16 l i nes)
DEFINE KEY 3 AS "16L."
DEFINE MACRO EXTERN

FIND=EXTERN
I;FIND=EXTERNAL.

Linda Williams & Linda Hall

DEFINE MACRO RETURN
FIND=RETURN
I;FIND=MAIN.

FIND=MAIN.

In the creation of initialization files, or when us-
ing features from other initialization files, some
commands must be used with caution; others will
require further careful study to understand and
utilize their full potential. For example, this il-
lustration contains no defined commands either to
exit an edit session CTRL/Z *ex i t or to quit an
edit session CTRL/Z *quit . The possibility of mis-
takenly QUITing an edit session, thus not saving
edit changes, rather than EXITing and saving these
specific changes, is too great to risk using a previ-
ously defined key which might be hit by mistake.
Other users have kept these definitions in their
initialization files and have mistakenly destroyed
the results of an entire edit session, a very costly
result. Initializations files may also contain
commands, such as

DEFINE KEY GOLD B AS
DEFINE KEY GOLD C AS
DEFINE KEY GOLD D AS
DEFINE KEY GOLD F AS
DEFINE KEY GOLD G AS
DEFINE KEY GOLD H AS
DEFINE KEY GOLD I AS
DEFINE KEY GOLD L AS
DEFINE KEY GOLD M AS
DEFINE KEY GOLD N AS
DEFINE KEY GOLD P AS
DEFINE KEY GOLD Q AS
DEFINE KEY GOLD S AS
DEFINE KEY GOLD V AS
DEFINE KEY GOLD Z AS
DEFINE KEY GOLD - AS
DEFINE KEY GOLD , AS
DEFINE KEY GOLD ; AS
DEFINE KEY GOLD : AS
DEFINE KEY GOLD " AS
DEFINE KEY GOLD " AS
DEFINE KEY GOLD = AS
DEFINE KEY GOLD + AS
DEFINE KEY GOLD \ AS
DEFINE KEY GOLD [AS
DEFINE KEY GOLD I AS

"I(\bf)'Z -C."
"I\centerline()-Z -C."
"I\baselineskip . "
"I\footnote()('Z -2C."
"I(\it)-Z -C."
"I\halign{)̂ Z -C."
"I\itern()-Z -C."
"I\line()-Z -C. "

"I\magnification=."
" I\hf ill. "

l8I\par \noindent. "
"I\hskip . "
"I\ss .I'
"I$$\vbox()$$-Z -3C.
"I\bye ."
"I\underline()-Z -C."
"I\matrix(\cr)-Z -4C. "

"I(\hbox())'Z -2C. "
"I\pmatrix(\cr)̂ Z -4C."
"I\eqalign(\cr)-Z -4C."
"I\eqalignno(\cr)̂ Z -4C."
" I\widehat . "
"I\widetilde ."
"I\pmb($$)̂ Z -2C. "
"I\overline()-Z -C."
"I\cases(\cr)-Z -4C."

The DEFINE KEY command allows commonly used
rn commands to be inserted into a TEX data
file using only the defined keystrokes, e.g., GOLD C
instead of typing \center l ine, etc. The command
is placed after the "1 (insert), -Z signals the
end of the command, the curser can be moved
back by specifying spacing -4C, and . " indicating
placement where the command is invoked. By
defining commands in this manner formatting

errors and typing errors can be reduced. A well-
designed EDT initialization file can enhance EDT's
power further in the creation of w.
Conclusion

This paper presents of three major topics: 1) EDT
line-mode features, 2) EDT screen-mode keypad
features, 3) EDT initialization files. As the paper
progresses from topic to topic, each step has in effect
reduced the number of keystrokes and increased the
power of the editing tool. While it is sufficient
to know only one editing modality, such as line-
mode, familiarity with screen-mode will enhance
editing even more. By adding the power of the
third topic, time-saving advanced applications can
be developed.

It is not within the scope of this paper to
condense volumes of user manuals to just a few
pages, but it is sufficient to say that there is no
substitute for learning through real-life experience.
Thus, the purpose of this paper is to acquaint the
user with some often overlooked editing features.
Efficient use of a sophisticated editor makes a fast
and effective tool and its power should not be
overlooked.

Acknowledgements

Without the help and patience of two individuals
this paper would have been an impossible task. Our
thanks goes to Harry Ferber I1 for his writing and
presentation experience and Heinrich Senge for his
ingenious . edt files.

Bibliography
Boston Business Computing, Ltd. EDT+. Andover,

Massachusetts, 1990.
Digital Equipment Corporation. Guide to VMS Text

Processing. Maynard, Massachusetts, April 1988.
Digital Equipment Corporation. VAX EDT Quick

Reference Guide. Maynard, Massachusetts, Septem-
ber 1984.

Digital Equipment Corporation. VAX EDT Ref-
erence Manual. Maynard, Massachusetts, April
1988.

The University of Tennessee Computing Center.
VAXCluster User's Guide. Second Edition, UT
Publication Number E01-9915-004-89, Knoxville,
Tennessee, 1989.

TUGboat, Volume 11 (1990); No. 3 -Proceedings of the 1990 Annual Meeting

TEX for W n i c a l Typists

Charles R. Martin
National Biomedical Simulation Resource, One University Place Suite 250, Durham, NC 27707
(919) 383-2256. Internet: crmanbsr . duke. edu

Abstract

Many TEX users are not programmers or mathematicians but
technical typists, practitioners of a skilled craft. These users
often find existing TEX texts intimidating and cryptic. rn for
W n i c a l Typists is intended especially for these users. Each
unit introduces a few concepts, then immediately reinforces
those concepts with practical experience using a short document.
Students see visible results immediately, which leads to rapid
progress and greater confidence. The course encourages an
experimental attitude that serves well in practice. for
m n i c a l Typists appears to be an effective way to teach
technical typists to create attractive documents.

Teaching TEX to nontechnical staff. People
who prepare documents using 7&X find themselves
not just typing, but setting type. Doing so means
that they have an opportunity to exercise consid-
erably greater creativity and craft. It also means,
however, that they must learn new skills; these skills
require effort and time to learn. Mathematicians
and programmers often find acquiring these skills
to be relatively easy, because they have background
knowledge on which to draw.

Many people use who are neither pro-
grammers nor mathematicians. These people often
have difficulty getting started in TFJ. QJY for
m n i c a l Typists is an introductory course directed
toward nontechnical users of TEX, who are neither
programmers nor mathematicians, but who have
experience with technical document preparation.
These users are sometimes known as "technical
typists", "technical editors", or "technical writers".
All of these groups have their own expertise and
their own qualifications; for simplicity and because
the course is intended to be as broadly applicable
as it can be, we can consider the technical typists
as our example audience.

for m n i c a l Typists is based on an op-
erational approach to TEX. In this approach, the
students are exposed to a very few concepts at
one time; these concepts are then immediately re-
inforced with exercises. This quick reinforcement
has two effects: it helps the students learn each
concept, and reduces confusion; more important,
each successful exercise reinforces the students' con-
fidence. With greater confidence, the students are

more willing to experiment on their own, and more
willing to brave the mystic realms of The m b o o k .

The audience: Technical typists. Document
preparation is a craft in itself. As with most
crafts, it has aspects of labor, skill, and art: the
simple mechanical labor of keying a text; the skills
needed to handle complexities of the language, of
punctuation and capitalization: and artistic aspects
like those of book design. The people we speak
of as technical typists are the tool and die makers
of the crafts of the secretary: they must not only
be masters of the skills of typing manuscripts, they
must be aware of all the other issues involved in
preparing drafts, "clean copy" for submission, and
camera ready copy for publication. Surprisingly
often now, photo-offset printing means that these
people also prepare the final designs and camera-
ready copy for entire books.

Technical typists are usually accustomed to
using complex terminology, and those who prepare
scientific texts are skilled in using difficult symbol-
ogy. We can expect them to have considerable skill
with the mechanics of typing as well as aesthetic
sense and a sense of good style. We can't expect
them to be skilled programmers, or to be more than
very slightly acquainted with mathematics.

Intimidation. Someone reading The m b o o k is
immediately presented with stylish but dense prose,
and confronted with the dread "double-bend" sign.
From the first time I tried to teach a technical
typist to use lQX, I have heard some variant of the
sentence "I'm just too dumb to learn this." This is a

TUGboat, Volume 11 (1990), No. 3--Proceedings of the 1990 Annual Meeting 425

Charles R. Martin

sign that they are intimidated by the material. The
course is based on the idea that this intimidation is
the most important impediment to learning to use
ma

Why are they intimidated? In my opinion,
there are several reasons:

As a reference, The W b o o k must present a
lot of material; The w b o o k at once presents
a typesetting system, a tutorial on typesetting,
and the reference for a complex programming
language. The presentation is necessarily dense.
The m b o o k is not structured as a cookbook;
rather than presenting recipes, it presents the
material in a form more similar to mathematics
texts. Learning the material requires more
than one reading.
The material is directed toward the particular
typesetting problem Knuth found most trou-
bling: typesetting mathematical text. Unlike
W ' s technical users, many technical typists
are not mathematically skilled, and often they
feel a certain distaste for mathematics in gen-
eral.
The course is particularly intended to avoid

intimidating the students at any time. The key
to this is to structure the course always to instill
confidence. Some part of this is attitude: how many
people have taken courses in which the instructor's
managed with every word and every sentence to
imply how much smarter the instructor was? But
beyond questions of attitude, there are many specific
steps that can be taken to instill confidence in the
students.

The instructor should always be careful to
praise the students repeatedly, even though I think
many people feel that repeated praise is somehow
patronizing. As long as the praise is sincere - which
it can be with a little thought on the instructor's
part in order to recognize the praiseworthy parts of
any sincere effort - then students are quite willing
to accept it.

The dual of the exhortation to praise repeatedly
is never to punish. The greater the intimidation
level of the students to start, the more easily
any punishment can be interpreted as a sign that
competence in TEX is beyond the student. Once
students believe they can never become competent,
that belief becomes prophecy. Similarly, the more
often the instructor reinforces the belief that com-
petency can be achieved, the more likely that belief
will become self-fulfilling prophecy.

The general rule should be "to instill c o d -
dence, ensure success; to build competence, ensure
success in successively more difficult problems."

The course: Structure and philosophy.
for w n i c a l Typists is organized around a series
of small tasks, chosen so that each of the tasks is
slightly more than trivial, but not much more. For
example, the first task is to type two paragraphs of
text with no font changes and no Tfl commands
whatsoever, and process it through to a printed
document. These small tasks I call "units" for want
of a better term.

Each unit in the course is structured around
a small number of concepts. The first unit, for
example, is intended to ensure that the student
understands the basics of using whatever editor and
operating system is used in the course, and that the
student has succeeded in producing a document.
These are intentionally small goals; the size of
the succeeding steps, and the number of concepts
included, will increase, but a starting point this
simple makes it certain that the students start the
course with a success.

The concepts are introduced through a specific
document that serves as the focus and assignment
for the units. These documents are chosen (directly
influenced by Knuth) in the attempt to be light and
amusing. Since I don't trust my comedic writing
skills, early texts are stolen from collections of jokes
and small, humorous essays. Later texts, of course,
must be chosen to illustrate specific skills such as
typesetting multiple integrals; the number of jokes
using multiple integrals being small, the examples
are composed specifically for the course.

Each unit has a few minutes of lecture, followed
immediately by an experiment; this experiment
first uses the concept, then extends the concept in
some way that requires the student to use some
creativity and thought to reach a solution. Later
units necessarily build upon earlier units; this can
be extended to make certain that concepts from
previous units are always re-used in some later unit.

I cannot emphasize enough that each unit
is directed toward success; those students who
have some problem with a step get help from
the instructor and from each other until they
successfully complete the unit. (As an aside, I
believe that allowing and encouraging students to
help one another has several benefits. It improves
the environment for everyone, not least the harried
instructor. It leads the better students to help
bring the less-talented along, and it also improves
the more-talented students' competence.)

426 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Tj-$ for m n i c a l Typists

This approach has a number of features that
can be explained psychologically. First, the struc-
ture of the units means that there is a short cycle
between the introduction of a concept and its actual
use, and hence little separation between the first
introduction of a concept and reinforcement in cor-
rect use of the concept. From the time of Skinner's
pigeons, it's been well-known that this encourages
quick learning.

Second, each unit leads to the successful com-
pletion of a task that the student perceives as a
difficult one; the pleasure of doing this is hard to
beat. This in itself reinforces the student in the
concepts used, and makes the class rather a pleasure
for both teacher and student. Since the student
is generally motivated for one reason or another to
learn the material, sucessively greater achievements
are very rewarding for everyone. (There is little that
is better than teaching a topic to happy students.)

Finally, when concepts introduced previously
are reused, and these reuses are pointed out, the
interactions between the concepts is emphasized.
To ensure this for all concepts, it is necessary to
include some review units at the end of a course in
order to make several reinforcing uses of the final
concepts. As more and more such associations are
built up, the students are increasingly likely to build
up their own associations. This leads to greater
comprehension, as the students' cognitive models
are expanded.

To summarize quickly, a successful unit is built
using these guidelines:

0 Don't be afraid of asking questions that are
too easy. Any unit that introduces anything
new leads to learning. People prefer getting
the right answer to the pleasure of any noble
effort that doesn't lead to a right answer.

0 For that reason, target the units' contents to
ensure that all students achieve success. Use
the talents of any more-talented people in the
class to help the less-talented, in order to
balance the load and prevent boredom.
Ensure that later units use concepts from
previous units. (Even the very first unit can
use concepts from the students' experience as
typists or compositors.)

0 Plan for several reinforcing units as the last
units in a course, which introduce no new
concepts or few new concepts, but which ensure
that all previous concepts are reinforced at last.

Discussion and conclusions. I've now taught
this course many times; much of the content of this

paper comes from self-examination of my own mis-
takes. (Much of the rest comes from remembering
the most horrible experiences of my own checkered
academic career: there is a lot to be said for remem-
bering the things one hated most in courses, and
trying not to make the same mistakes!)

Here are some of my own mistakes:
0 Require that the prerequisites be met. One

of my worst experiences in the course was the
time I agreed to teach an experienced group
an abbreviated version of the course, only
to find that the students not only were not
experienced with but were not in general
computer literate. If one cannot ensure similar
competence on the part of all students, one
is reduced to starting at the level of the least
competent member of the group. Nothing can
keep the course from being boring for some
part of the rest of the group.

0 Don't do requests. The course I mentioned
above was an amazingly productive source of
mistakes. The other major one was agreeing
to abbreviate the course. A one-day course is
a much different thing from a four-day course,
and must be planned as thoroughly. If it's
worth doing, then plan it out as carefully and
call it another course.

Similarly, any extensions can be trouble-
some. The worst of these was attempting to
add serious macro programming to the course:
students without a programmer's algorithmic
skills find macros completely opaque, and these
skills cannot be taught in an hour.

0 Provide the notes. Any course in Tj$ will
necessarily include a lot of details of various
coding and markup conventions. You can cover
lots more material if you don't expect the
students to take careful notes; instead provide
copies of your slides or detailed copies of your
notes for each unit.

0 Insist that every student have a copy of The
m b o o k . The students must be able to
look things up on demand. (Plus, they must
become comfortable with the book, and intro-
ducing them to it in class again reduces the
intimidation.) They will need their own copy
eventually, in any case.

0 Ensure sufficient resources. Without sufEcient
resources, the delay between concept and rein-
forcement is longer. As the delay grows longer,
the benefits of the short concept-use cycle grow
less. In particular, students must be free to
make mistakes, which means that they must

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 427

Charles R. Martin

be insulated from whatever cost there may be
in producing many printed results. This is
particularly true of environments where there
is no adequate previewer available.

Conclusions. for W n i c a l Typists has
proven to be effective and successful as a way to
teach composition using TEX to students for whom
The W b o o k and other texts are not very effective:
students with little technical background. These
students-particularly technical writers, technical
editors, and technical typists-can be taught to be
extremely effective mn ic ians ; they bring to the
job skills and taste that technically-educated users
have never had reason to develop. But to become
effective, they must be presented the material in a
special way.

One objection that might be made to this
paper is that it is simply an advertisement for the
particular TEX course I have designed. It is even
in part true: I am happy to teach the course, and
do charge a fee. But I think the points that I am
making are essential ones for anyone trying to teach
m; I hope that the concepts in this paper will
make it possible for others to construct effective
courses along the same lines as T&X for w n i c a l
Typists. The difficulty of getting started in is,
in my opinion, one of W ' s major problems: if we
don't solve it. the seductive ease of use of "what
you see is what you get" may doom us to years
of poorly designed and poorly typeset documents.
As with so many other problems, the solution is
education.

A fit of philosophy. Document processing
is moving away from a separation between the
author, the person keying the document, and the
person composing the typeset page, and toward a
separation between the roles of creator of the text
and creator of the attractive text on a page. More
and more, those who compose the text on the page
will take on a more creative, and less mechanical
role. We will eventually need to recognize these
people as craftspeople. l&X is a part of this process;

skills allow these people greater creativity.
as they exert greater control over the results of
their work. More creativity and more control
over the results means more power and inevitably
more professionalism. Teaching to "technical
typists" means teaching these skilled craftspeople
ways to enhance the parts of their craft that require
the most skill and are most like an art.

Acknowledgement. The course for w n i c a l
Typists grew from one I originally wrote for the
Physiology Department (now Cell Biology) at Duke

University and its then-chairman, Edward A. John-
son, M.D. I've been able to continue to develop this
course, and to present it, at least in part through
the forbearance and assistance of J. Mailen Koot-
sey, Ph.D., of the Departments of Cell Biology and
Computer Science at Duke University. Facilities for
the preparation of this paper were provided through
the kind assistance of the National Biomedical Sim-
ulation Resource, supported under NIH Division of
Research Resources grant 5P41-RR01693.

428 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

V m Enhancements to the Language

Michael Vulis
Micropress, Inc., 67-30 Clyde Str., Forest Hills, NY 11375
718-575-1816. Bitnet: cscmlvBccnyvme

Abstract

V W enhances w by providing support for scalable fonts
and thus achieving true device independence. V m turns w
into a compact system (less than 10% of the size of traditional
W) , supports a printer driver definition language, supplements
the T)$ system with a number of new high-quality scalable
typefaces, implements a variety of font effects (compression,
shade, outline, shadow). Support of scalable fonts necessitated
certain changes to the TEX program, syntax, and fonts; this
article describes some of these changes. Since it is likely that
other scalable implementations will follow, the author hopes
that a scalable TEX standard can be defined before appearance
of a conflicting set of definitions.

The Aim of the V w System

Device-independence. From the beginning, TFJ
was designed as a device- and resolution-independ-
ent document processor; however, because of its
reliance on raster fonts, has never achieved this
aim. In a typical T)$ implementation, a user is
confined to particular output devices and particular
resolutions by the mere necessity to maintain a
large volume of raster fonts. A typical 'l&X with
a reasonable collection of fonts requires between
10 and 15 MB of storage; support for a second
device, or just another magnification step, adds a
few megabytes of storage.

The VTEX system is based on vector, rather
than raster fonts. Instead of maintaining multiple
copies of raster fonts at each resolution, V m keeps
only one version of each font. The algorithmic
encoding of characters is expanded into raster
images at run time, allowing instant access to any
needed magnification. Use of vector fonts not only
greatly increases the number of available fonts - it
also shrinks the size of the 'l&X system to under a
megabyte.

Changes in TEX Syntax
Dynamic fonts in V W necessitated certain changes
in TE,X syntax, most importantly in the \font
command. These changes do not interfere with the
TRIP test (so V'l&X is still a m), and provide
much greater flexibility in choosing fonts.

scaled and at . The scaled and a t parameters
work as in standard 'l&X, with an important ex-
ception: any acceptable value that follows these
keywords is fully supported by all device drivers.

slant . The s lant keyword is used to specify the
amount of slant in the font. Any VT@ font can
be dynamically slanted. The number that follows
the keyword is the slant coefficient, multiplied by
1000. The s lant keyword makes the existence of
cmsl, cmssi and cmti fonts unnecessary, since they
can be obtained from other fonts. For instance,
\f ont\sl=crcirlO s lant 167 can be used to declare
a slanted roman font.

aspect. The aspect keyword specifies the aspect
ratio of the font. aspect 1000 is the default,
aspect 500 defines a half-height font, while aspect
2000 defines a font that is twice as high as the
default font. The aspect keyword, in particular,
makes cmdunh unnecessary, since cmdunh is fairly
close to an "aspected" cmr.

smallcaps. The smallcaps keyword defines a font
of caps and smallcaps. Any font can be used with
the smallcaps option. This keyword makes cmcsc
and cmt csc unnecessary.

outl ine, shadow, gray, and f i l lpa t te rn . These
keywords implement standard font effects: outline,
drop shadow, gray, and pattern shading. The
width of the outline and the length and direction of
shadow can be specified in resolution-independent

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 429

Michael Vulis

units. The gray option is followed by the percent-
age of gray; gray is reasonably device-independent.
The f i l l p a t t e r n option implements non-uniform
shading, such as horizontal or vertical stripes; f i l l -
pa t te rn is inherently device- and implementation-
dependent. (The current implementation simply
enumerates the available fill patterns).

Changes in Internals

TEX program. Additional features supported by
the \ font command forced deep changes in the
V m program. Character dimensions (widths,
height, depth, and italic correction) are computed
dynamically whenever a character is used. The
dimensions are adjusted when the font has s lan t ,
aspect, and smallcaps; but no adjustment is made
for shade, out l ine, or shadow. The changes to the
TEX program generally fall into two groups: the
font dimension computations and the \a l ias f ont
primitive. The precise specifications for changes
will be made available to interested w users.

TFM format. V m retains the structure of . tfm
files but alters the meaning of some fields. For
instance, the italic correction values in V m . tfm
files are stored for fonts slanted 45" (s lan t 1000).
The actual italic correction is dynamically computed
by v w .

Notice that if a font is defined with s l an t 1000,
no adjustments are made to the italic correction
specified in the . tfm file. This is used with those
Symbol fonts (e.g., math extensions) that should
never be slanted. These fonts should be defined
with s l an t 1000; a flag in the font file informs the
drivers that slant should be ignored.

DVI format. The DVI format has been enhanced
to support vector fonts. To retain as much compat-
ibility as feasible, extra font information is passed
as a \specia l that immediately follows a f ontdef
command. Thus, drivers that use raster fonts can
handle enhanced DVI files by ignoring the "tail" of
the f ontdef command.

Font names. As mentioned above, V m does
not support those Computer Modern fonts that
can be obtained as attributes of other fonts. To
retain source compatibility with raster 7&X sources,
VTEX implements the \a l ias f ont primitive. This
command maps font names: specifying

\a l ias fon t cms110=mvr10 s lan t 167
forces V m to treat all references to the cmsllO
font as references to the mvrlO font with the s l a n t
167 parameter.

Fonts
VTEX supports vector analogs of Computer Modern
fonts. For compatibility, V'T)$ uses the same
metric files as raster-based m. V'T)$ fonts were
developed with the InstaFont program. InstaFont
is a combination of the optimized METAFONT
algorithms with a user-friendly interface. InstaFont
makes font development a relatively trivial task-
a complete font can be designed by a novice in
less than a week. (For comparison, the Euler font
project sponsored by AMS featured about character-
per-day performance.) About one hundred fonts
have been developed, including look-alikes of such
traditional typefaces as Times Roman, Helvetica,
and Avant Garde.

Font Layouts
Several changes were made to the font layouts,
primarily to eliminate some inconsistencies in the
original 'IjEX layouts. In particular:

V m fonts contain all printable ASCII char-
acters, including the greater and less signs and
braces. The original w approach of borrow-
ing these characters from symbol fonts works
poorly with bold or non-CM fonts.
The " character (\char34) is a straight double
quote, not the closing double quote. Closing
double quote is still available as the ligature
".
Straight quote is available, since it may be
preferred to the opening quote in some abbre-
viations.
V w does not LLcross" L or 1. Instead crossed
L and 1 are included as separate characters. In
professional typefaces, the crossing line in these
letters is not a straight line.
Vl$jX fonts include a number of additional
characters, that are essential for professional
typesetting, Among them are the section,
paragraph and dagger signs, pound and yen,
single and double guillemets, crossed D and d.
Ordinary m lacks some of these characters,
the others are "borrowed" from symbol fonts.
This works poorly even with many CM fonts:
the usual section sign does not blend well with
CM Bold Sans-Serif text (§§1.1).
The changes in the layout are mostly trans-

parent, since they are compensated for by changes
in PLAIN macros. Thus, as long as the user does
not unnecessary refer to characters by their position
and does not use the double quote character for
closing quotes, V!@X stays compatible.

430 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

V w Enhancements to the w Language

Printer and Screen support
In order to support the maximum number of print-
ers without having to manufacture many different
device drivers, V Q X uses printer definition files.
These files are written in a brief Pascal-like language
that is sufficiently flexible to describe most graphics
printers. A Printer Information Compiler (PINC)
compiles the definitions to a pseudo-code, which is
interpreted by device drivers during printing. Since
compiled printer information files (.PIN) are very
small (100 - 200 bytes each), V w supports many
printers in minimal space. On most printers more
than one resolution is supported. For instance, on
the NEC P-series, the output can be written at
120x240, 240x240, l8Ox 180, 36Ox 180, or 360x360
dots per inch. The variety of PIN files allows the
user to choose the optimal tradeoff between time
and quality. PINs for non-standard printers can be
easily designed by the end-user with PINC.

In a similar fashion, V m supports Screen
Information files (.SIN). The "open architecture"
approach of V Q X resulted in many PINs and SINS
developed by V?jEX users.

Performance
Runtime scaling used by V m drivers does not
seriously slow down printing or previewing. The
following factors contributed to the performance:

V@ scaling algorithms are very fast (up to
500 times faster than those used by META-
FONT).
Similar to Postscript, V m drivers maintain
a font cache and reuse characters.
V w allows one to pre-generate commonly
used fonts. If raster fonts are available, they
would be used instead of vectors. Preliminary
timing experiments show that in most cases it
does not pay to pre-generate more than two
or three of the most common fonts. On 386
class computers, pre-generation is completely
unneeded.
The current implementation limits font scaling

to approximately 120 - 150 point fonts (at 300 dpi).
This is because V Q X font effects require drivers to
actually generate the entire bitmaps in memory. By
the time this paper appears, we expect to raise the
limits to about 1000 points (for a 386 CPU).

A Dirty Trick: Find-a-Font
The availability of fonts at any size makes the
following example meaningful: Assume that you
want to fill a box of given width and height with a

given text set in a given font. It is simple to write
a generic TpX macro that will return the required
magnification of the font. In a raster-based m
this macro would not be especially helpful-the
chances are it will return a magnification that is
not available. With V m , however, the computed
magnification (and, if desired, the aspect ratio) can
be used immediately for actually building the box.

The same approach can be used to build an
adjustable \hat macro. w provides the \hat in
just three sizes. It is, however, possible to compute
the dimensions of a \hat that would cover a given
expression, and then construct a font that would
contain a \hat of the correct size. The same
approach can also work with extendable delimiters.

Not Yet Implemented

Single character scaling. The examples given
above will work, as long as you do not use too many
individually scaled characters at once. Defining an
entire font to scale a single character is overkill,
since there are limits on the number of fonts and
the amount of font memory available. A possible
mechanism would be to allow individual scaled
characters with a syntax similar to

\charc\^ xscaled 4000 yscaled 1200

Such an extension would not be difficult and may
be implemented in V w in the future.

Rotation. Vector font representation, used in
V m , allows easy rotation of fonts. A 90" rotation
may be particularly useful. A possible syntax for
such an extension would be the rotated keyword
on \hbox and \vbox commands. Again, changes to
the 'l$J program would not be too difficult.

Much more exciting is a possibility of incorpo-
rating an arbitrary-degree rotation. The algorithmic
font representation used by V w makes genera-
tion of rotated fonts relatively simple. On the
other hand, A. Hoenig demonstrated in a recent
TUGboat article (volume 11, number 2, pages 183 -
190) a set of macros that position text along
slanted lines and a circle. Hoenig's approach relies
on pre-generation of a large number of fonts via
METAFONT; if a 50-letter sentence is to be posi-
tioned along a circle, 50 different fonts are to be
generated. Combining his ideas with V m would
remove the font pre-generation element. However,
an unmodified 'l$X engine will still have to allocate
50 fonts, which will be extremely memory consum-
ing. Thus, additional changes will have to be made
to QX internals to make Hoenig's techniques truly
useful.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 431

Michael Vulis

Graphics. A natural complement to scalable fonts
would be scalable graphics. We are currently eval-
uating several possible approaches and would very
much appreciate input from the m community.

Accent Positioning. V m currently follows
w ' s centering approach to accent positioning.
While experimenting with CM and non-CM fonts,
we have discovered many glitches in positioning
(L for one). Ideally, every font should include a
correction table that specifies the amount an accent
should be shifted from the default position. This
type of positioning is rather similar to kerning and,
in fact, can and should be specified as part of the
. tfm kern table. Changes to the m program will
be minimal.

Support for older implementations
V m typefaces can be used with raster-based m.
Doing this defeats the main goals of V m since with
older implementations adding more typefaces
makes the system much more bulky. However, this
would be a solution for those outside of MS-DOS
world (V m currently runs only under DOS), and
those who are not yet ready to accept scalable fonts.

To install V'&X typefaces in other '&X's one
would use the PXLGEN font scaling utility that
creates raster fonts in PXL or GF format. PXLGEN
supports most of font attributes described above.
PXLGEN uses the same scaling kernel as V m , so
scaling is extremely fast. For instance. generating a
cmrlO variant at 300 dpi takes under 10 seconds on
3861 16mhz machines.

PXLGEN's companion program TFMGEN adjusts
V m . tfm files for use with non-scalable m s .
This is necessary, since non-scalable m s require
different . t fm files each setting of s lan t . aspect,
and smallcaps parameters.

Availability. If you are interested in trying PXL-
GEN, send a self-addressed stamped disk mailer to
Micropress.

The question whether V m is or a different
program came up during the discussion of this
paper at the TUGboat Annual Meeting. While the
ultimate judgement lies with the '&X community,
I would like to begin the dicussion with a few
remarks:

0 V m is 7$jX since it supports a compatibility
mode, where all enhancements are disabled.
Documents (and .dvi) files created in the

compatibility mode are fully compatible with
any other T)$.
V m is TpX since V m enhancements cannot
be detected by TRIP. (But one can surely de-
sign a special single-purpose TRIP that V m
will fail).
V m is not really T)$, because the way one
uses it is different. Many new macros can be
written that would be Vm-specific.
VTpX is not really m, because switching to
V m is like following a one-way street. V m
can read generic m files, but the reverse is
not always true.

And, finally:
VT)$ is not really m, because ultimately it
will not be. Historically, a successful program
has a life span of only 3-5 years. just
celebrated its eleventh birthday, which is in
itself an unparalleled achievement. However, rn is losing ground to more modern packages
(notably, Wordperfect). Long-time survival of

requires substantial improvements to the
program, and some compromises on compati-
bility. We would like to consider current V m
as just a first tentative step in this direction.
and (let us hope) not the last.

Acknowledgements
The author would like to thank Lin Tay, Donald
Tsai, Denny Chen and others for their help in
creating V m , early V m users for struggling
with embarassing bugs but not giving up, and last,
but not least, Lincoln Durst, for greatly improving
the readability of this paper.

432 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

V m Enhancements to the m Language

Appendix

Examples of VTJQC Fonts
The fonts below are all at 30 points. The examples were printed on an HP LaserJet printer at 300 dpi.

This is like Hobo
T h i s i s like Broadway
This is lilrc I t : ill:wlr

Thir ir like Blippo
This is like Palatino Regular
Elis is' Like CLoiGter (@~b ~ngl is 'b)
This is like Korinna Regular

This is like Times Roman
This is like Windsor Bold

This is like Clarendon Bold
This is like Amer. Typewriter
This is like Handel Gothic
This is like Avant Garde Bold

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Michael Vulis

Examples of V m Effects
The examples below were printed by V m on an HP LaserJet I1 printer at 300 dpi.

\font\test=mvavnb scaled 3000 outline ...

\font\test=mvhlvb scaled 3000 shadow outline ...

\f ont\test=mvtmsb scaled 3000 smallcaps f illpattern 3.. .

\font\test=mvkorb scaled 3000 outline fillpattern 7...

\font\test=mvfrac scaled 3000 shadow fillpattern 12 ...

\font\test=nivavnm scaled 3000 aspect 800 ...

This is an expanded font.
\font\test=mvavnm scaled 3000 aspect 1200...

This is a compressed font.
\font\test=mvpalr scaled 3000 slant 250.. .

This is slanted right.
-

\font\test=mvpalr scaled 3000 slant -250.. .

This is slanted left.
\font\test=mvssbxlO scaled 3000 slant 200 outline smallcaps fillpattern 6...

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

A Constructed Durer Alphabet

Alan Hoenig
John Jay College, City University of New York; Mailing address: 17 Bay Avenue, Huntington, NY 11743
516-385-0736

Abstract

The author used METAFONT to implement the design of a
Roman uppercase alphabet by Albrecht Diirer. Although Diirer
intended only a Roman alphabet, an attempt was made to create
METAFONT programs to generate related fonts in a bold, sans
serif, typewriter-like, slanted, and casual style. (The last of these
is a style inspired by informal Roman letterforms designed by
Sumner Stone and Neenie Billawala.)

Introduction
In the year 1525, the German artist Albrecht Diirer
published a work on art techniques which included
his specifications for an uppercase Roman alphabet.
Diirer was one of a series of artists who, fascinated
by the beauty of Roman capitals especially as they
appeared on antique Roman monuments, sought to
generate recipes for their construction. The recipes
would only involve circular arcs and straight line
segments. Knuth [I9791 lists many of these efforts,
and they have continued right till the present day
(see Goines [1982]).

Published accounts of these alphabetic con-
structions reveal that, for the most part, these
alphabets are dreary and lifeless. Diirer's alphabet
is an exception, and there are two reasons for that.

1. Diirer was far superior an artist to any of these
others, and

2. Diirer cheated. Many of his letters require
curves other than circular arcs, and some other
little flourishes and touches that add zest to
the plates that accompanied his work are not
specified at all in the printed description.

Nevertheless, I thought it would be an interesting
project to use METAFONT to create the uppercase
font for use by and other typesetting systems.
The purpose of this presentation is to describe this
project.

Diirer's Design Scheme
Diirer imagined each letter as inhabiting the inside
of a square. Fractions of each side determine the
linear dimensions of each letter. Let the length of
each side be s. Then for example, all thick stems
of letters (such as the verticals in I and H or the

thickest parts of the curves in S) are to be one-tenth
of s , and all thin stems (such as the horizontal cross
stroke in H) are to be one-third as broad as the
thick stroke. All seriffed corners are constructed
the same way, out of broad strokes and filled-in
quarter-circles.

A B C D E F
G H I J K L M
N O P R S T
U V W X Y Z C

Figure 1: Diirer's uppercase Roman alphabet.

METAFONT proved adept at creating these
letters, and at smoothing over those portions of
the curve which are not strictly circular or straight.
After all, one basic design goal of the METAFONT
system is to create pleasing curves. However, when
METAFONT was constrained to use circular arcs as
much as possible, it took more time than usual to
create each letter. Figure 1 displays this font.

It's helpful to examine the construction of one
of the letters, such as the capital D, to see how
Diirer's design scheme works (see Figure 2). Begin
by laying out a square of side s. Next, mark two
serifs at the upper and lower left corners. The
serifs are framed by quarter-circles whose radius is
T = s/10. Abutting the serifs, draw the vertical
stem, whose thickness is also T.

Two short horizontal bars will connect the
stem to the curved bowl. These bars are each
of thickness t = T/3 and of length (112 - 2110)s.
The outermost outline of the curved lobe will be a

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 435

Alan Hoenig

semi-circle whose radius is s/2. The thickest part of
the lobe will be of thickness T , and will connect the
upper and lower thin bars. This inner arc will have
diameter s - 2t and radius half that. The center
for this circle will be at the point with coordinates
(112s - (T - t) , 5-12); the origin of this coordinate
system is at the lower left corner of the bounding
box. Round the lower inner corner by adding a
serif-like quarter-circle, and, finally, fill in the entire
outline. (In METAFONT, the construction technique
is easier to implement than it is to describe.)

In the same way, Diirer presents descriptions
for 22 other letters. (His account omits the J, U,
and W.) Competent modern translations of Diirer's
letter programs together with the illustrative plates
are listed in the bibliography.

Generalizing the Design

Diirer's alphabet turns out to be surprisingly hand-
some, and great fun to implement with METAFONT.
(See Figure 1 for specimen letters.) As I entered
the terminal phases of this project, I was struck by
one inadequacy. Although the alphabet, which I
call Computer Diirer Roman (CDR), was a META-
FONT font, it was not a true meta-font, because
there were few parameters to vary. With properly
designed meta-fonts, such as the Computer Mod-
ern or Pandora families, it's possible to twirl and
twist software "knobs" to generate whole families of
different (but compatible) fonts.

Figure 2: Diirer's construction of the letter D. In
the penultimate frame, the D appears surrounded
by the "scaffolding" as it appears in Diirer's plates.

In my opinion Diirer's design specifications
themselves left little room for adjustment. In
Figure 3, for example, we see Diirer's H together
with several variants obtained by varying the radius
of the serif quarter-circle, which is also the thickness
of the vertical stems. There does not seem to be
much room for parameterization in this design
scheme, and varying the serif radius leads to designs

which aren't particularly pleasing. The bottle-neck
to the metamorphosis to a true meta-font seems to
be Diirer's construction of serifs, tied as they are to
quarter-circles.

HHH
Figure 3: Varying the serif radius and stem thick-
ness for the letter H. The second letter shows the
H as Diirer wanted it. The third letter shows
an H where the stem thickness is one-ninth the
side, a fraction given by other letter designers
contemporary with Diirer.

The key to successful parameterization of the
Diirer font lies in rethinking the arcs that constitute
the serifs and bowls. For example, it is possible to
design a "circular," Diirer-like serif in the following
way, motivated by techniques used both by Don
Knuth and Neenie Billawala in their METAFONT
constructions.

For this demonstration and discussion, imagine
that we want a serif in the top left position of a
stem, such as the upper serif of a D. Draw a pair
of horizontal upper bars separated by a distance
d; this is the slab. In CDR, this value is d = 0,
so the pair of slab strokes collapses into the single
horizontal stroke we see in Diirer's serifs. Draw
also the vertical bar that frames the serif; this is
the bracket. Call the point where the slab and the
bracket intersect the corner point.

Now construct an auxiliary point which lies
midway between the endpoints of the slab and
bracket. Hypothesize the existence of a darkness
parameter whose meaning will shortly be explained.
It will be a number between 0 and 1.

Create the curved serif path as one which starts
at the end of the horizontal member, proceeds right,
passes through a point which is darkness of the way
between the auxiliary point and the corner point,
and ends up travelling down at the end of the
vertical member. Finally, connect the ends of the
slab strokes by a smooth curve.

Now we have a serif whose exact appearance
depends on fo7w parameters:

1. dl the thickness of the slab

436 TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

A Constructed Durer Alphabet

2. the length of the slab
3. the length of the bracket
4. the value of the darkness parameter

See Figure 4 for a diagram of a generalized Durer
serif.

(Corner point)

Figure 5: Examples of meta-serifs. The initial serif
is that of Diirer.

Figure 4: One way to draw the arc of a serif. The
line at point D is parallel to the line connecting
A and C. The heavy line traces the outline of the
serif.

When d = 0, when the vertical and hori-
zontal serif strokes are both equal to s/10, and
when darkness = 1 - f i t 2 z 0.29, the serif that
METAFONT draws is visually indistinguishable from
a Durer quarter-circle serif (although the equa-
tion of the curve that METAFONT draws is not
that of a circle). Under this interpretation of a
Diirer serif, it now becomes possible to hope that
meta-descriptions of letters are possible that will
reproduce Diirer's letters for one value of the pa-
rameters, and generate a series of related fonts for
other values of the parameters (see Figure 5) .

In order to exploit this insight, all the pro-
grams were redone in order to incorp orate "the
METAFONT way" in a better fashion. Figure 6
displays examples of non-Roman Computer Durer
fonts, specifically a boldface, slanted, sans serif,
a monospaced typewriter-like font, and a casual
font (together with CDR for purposes of compari-
son). The casual font was inspired by a family of
fonts created by Sumner Stone of Adobe Systems
and by some of the variant Pandora letterforms
designed by Neenie Billawala [1989]. Stone's fonts
are METAFONT-like in that a whole family of fonts
was designed to be visually compatible; specimens
will be found in recent issues of the Adobe Type
Catalog, Font & Function. His Stone Informal fonts
attempt to provide a font with an obvious connec-
tion to a formal Roman font, but which by looser
joins of straight strokes, a more flowing sinuosity
of the curves, and occasional omission of a serif
communicates an informal, casual bearing.

Design Limitations
In my creation of a meta-design, I tried to restrict
myself to the macros Knuth created for his Com-
puter Modern types. There were several reasons for
this.

1. I hoped to reduce the time for design by using
these available tools. Creation of a set of robust
METAFONT macros is far from trivial.

2. I felt I would learn more about type anatomy
by trying to fit CDR into a CMR mold.

3. In any full-scale font design scheme, a close
following of Knuth's macros may make it easy
to adapt all the math fonts for the new family.
Although that was not a concern here, I thought
it best to cultivate this style.

4. With luck, I would be able to adapt existing
members from the Computer Modern family for
characters not designed by Durer (see below).
I was not successful in this endeavor. META-

FONT type design macros are not valid for any but
a single family of type fonts. However, I was able to
adapt pre-existing CM macros for many of the tasks
I needed.

A More Useful Font?
A major disappointment in this project arose be-
cause of the limited uses of this font. Not only are
there no lowercase letters, no punctuation marks,
and no numerals (Durer created no designs for
them), but the uppercase alphabet is not even com-
plete. It lacks the J, U, and W, which did not exist
in those days. I was able to jury-rig a U applying
the existing principals of this font, a W from two
V's, and a purely ad hoc design for the J, but these
letters suffer in comparison with their mates.

In an attempt to render this font more useful,
I generated some CMRIO fonts with special values
of the parameters and also some minor tinkering
with the program files. Therefore, these fonts

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 437

Alan Hoenig

are no longer members of the Computer Modern
family. I replaced as many of Knuth's values in
the file CMRIO .MF by Diirer-like values to see if the
resulting font was in any way compatible with the
cap fonts CDRIO. For example, I identified the
side s of the square with METAFONT's cap-height
parameter, and let thickstem be . I cap-height. Mi-
nor adjustments to letter programs were needed
to eliminate some visual clashes between Computer
Modern fonts and the Diirer font. A sample of type-
setting mixing the Diirer caps with the modified
Computer Modern font appears in Figure 7 shown
at a 10-point, magstep 3, size. For comparison,
the same paragraph is shown in the correspond-
ing Computer Modern font. It looks nicer than I
expected, but the results should not be taken too
seriously.

DUERER A I P U
DUERER A I P U
DUERER A I P U
DUERER A I P U
DUERER A I P U
DUERER A I P U

Figure 6: Members of the Computer Diirer fam-
ily of fonts: bold, slant, sans serif, monospaced
typewriter, and casual.

An additional lesson I learned from this project
is that type design is a difficult craft in its own
right, and while it is feasible to assign the task of
rendering an existing font in METRFONT to someone
like myself, it is not feasible to ask this person to
design type.

ACKNOWLEDGMENTS. I am grateful for the finan-
cial support of the Research Foundation of the City
University of New York, grant number 669243, for this
project. I thank Barbara Beeton, David Ness, and
Hermann Zapf for several helpful comments.

Bibliography
Billawala, Neenie. Metamarks: Preliminary studies

for a Pandora's Box of shapes. Stanford, CA:
Computer Science Department, Stanford Uni-
versity (report STAN-CS-89-1256), 1989. (Copies

obtainable from the Users Group, P. 0. Box
9506, Providence, RI 02940-9506 USA.)

Diirer, Albrecht . The Painter's Manual. Trans. Wal-
ter L. Strauss. New York: Abaris Books, Inc.,
1977.

Diirer, Albrecht. Of the Just Shaping of Letters.
Trans. R. T. Nichol from the Latin text of the
edition of 1535. New York: The Grolier Club,
1917; reprinted by Dover Publications, 1965.

Goines, David Lance. A Constructed Roman Alpha-
bet. Boston: David R. Godine, Publisher, Inc.,
1989.

Knuth, Donald E. and METAFONT: New Direc-
tions in Typesetting. Bedford, MA: The Digital
Press, 1979.

Uppercase Easy Does I t
Puerto Rico 574 Argyle Road
a b c d e f g h i j k l m n o p
q r s t u v w x y z

Figure 7: (a) CDRlO completed by means of a
hacked-up CMRIO font.

Uppercase Easy Does It
Puerto Rico 574 Argyle Road
a b c d e f g h i j k l m n o p
q r s t u v w x y z

Figure 7: (b) For comparison, the second specimen
is typeset in Computer Modern at the same design
size.

438 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

TUGboat, Volume 11 (1990), No. 3

Abstracts

Deutsche Kurzfassungen der
TUG boat- Artikel
[German Abstracts of TUGboat Articles]

Luzia Dietsche

E-'QijX: Richtlinien fiir zukiinftige
Erweiterungen von 7QjX (F. Mittelbach,
s. 337)

Mit der Ankundigung von 'l$X 3.0 erkannte Don
Knuth das Bediirfnis der (immer mehr anwachsen-
den) m-Gemeinde nach einem verbesserten Sys-
tem an. Gleichzeitig machte er aber auch deut-
lich, daf3 er an keinerlei weiteren Entwicklungen, die
~ n d e r u n ~ e n im m b u c h rnit sich bringen wiirden,
beteligt sein wird.

m war ursprunglich dazu entwickelt worden,
die eigenen Veroffentlichungen des Autors zu set-
Zen. Inzwischen verwenden es Tausende von Be-
nuztern. Nach 10 Jahren Erfahrung ist es jetzt an
der Zeit, sich zu uberlegen, ob l&X 3.0 eine adaquate
Antwort auf die Anforderungen von Setzern in den
90er Jahren sein kann oder nicht.

Eine Ausgabe, die rnit TjjX erzeugt wurde, hat
einen hoheren Standard als rnit den meisten an-
deren Textsatzsystemen erzeugte Ausgaben. Des-
halb werden wir uns in diesem Bericht auf den
Qualitatsstandard, den Buchdrucker fiir "hand-
gesetzte" Dokumente aufgestellt haben, konzentrie-
ren und fragen, inwieweit dieser Standard von
verwirklicht wird. Die Grenzen von m ' s Algo-
rithmen werden analysiert, fehlende Besonderheiten
sowie neue Konzepte werden umrissen.

Senkrechtes Setzen mit T)ijX (H. Hamano,
S. 346)

Als technischer Verlag hatte ASCII Corporation
schon lange den Eindruck, dafi auf dem japanischen
Markt ein tatsachlich japanisches Textsatzsystem
notig ware. In einem ersten Schritt entwickelten wir
vor drei Jahren eine japanische Version von m,
rnit der es moglich war, Kanji zu verwenden.

Dieser Bericht stellt nun unseren zweiten
Schritt vor, in dem wir ein erheblich komplizierteres
m - S y s t e m entwickelten-das Hinzufugen einer
Funktion, rnit der man senkrecht Setzen kann.

Ein strukturiertes System zum Erstellen
von Dokumenten AutoLayouter (Y. Miyabe,
H. Ohta, K. Tsuga, S. 353)

Wir haben ein strukturiertes System zum Erstellen
von Dokumenten entwickelt (AutoLayouter), das
aus einem einfach aufgebauten Editor und einem
Formtierer besteht, der auf japanischem I P m
basiert .

Dazu haben wir aber nicht nur eine bessere Be-
nutzeroberflache entwickelt, sondern auch eine ein-
fache Dokumentenstruktur eingefuhrt. Ein Doku-
ment, das rnit AutoLayouter hergestellt wurde, ist
eine Liste, in der jeder Knoten einer logischen Kom-
ponente des Dokuments entspricht. Diese Verwen-
dung einer einfachen Struktur ermoglichte es, den
Editor einfach in der Anwendung zu gestalten und
dennoch machtig genug zu lassen, urn sowohl die
Struktur des Dokuments als auch seines Inhalts,
der zusatzliche feinere Untergliederungen enthalten
kann, zu editieren.

Seit der Verwendung dieser einfachen Struktur
mufiten wir verschiedene Makros hinzufugen, um
die Unterschiede zwischen unserer Struktur und den
begin-end Umgebungen von I4m auszugleichen.
ZusMzlich zum Editor haben wir einen Treiber ent-
wickelt, der dvi-Files in Kanji Postscript Files
umwandelt .

7QjXnisch werdend: Einblicke in Techniken,
rnit denen man T)ijX-Makros schreiben kann
(A. Hendrickson, S. 359)

Die meisten von uns verstehen die Grundformen von
m-Makros ; allein das bloBe Verstehen ist oft un-
genugend, wenn wir bestimmte Probleme zu losen
haben. Wir benotigen dann zusatzliche Einblicke,
um Methoden entwickeln zu konnen, mit denen man
Informationen weitergeben, Text rnit verandertem
Catcode verschieben, Leerzeile erhalten kann und
vieles mehr. Schreibt man ein grofles Makropaket,
sind eine Reihe neuer Aspekte zu beachten: Wie
kann man es vermeiden, iiber die Einschrankungen
der diversen Implementationen zu stolpern, wie sie
z.B. die Zwange von hash s ize, s t r i n g s i ze und
andere Grof3en darstellen? Wie macht man eine
komfortable Benutzeroberflache? Wie macht man
die Eingabe so knapp wie moglich?

Einige der Techniken, die hier vorgestellt wer-
den, zeigen, wie ein Makro mit variabler Anzahl von
Argumenten geschrieben werden kann; wie man Cat-
codes in Makros andern kann, indem man ein an-
deres Makro definiert, dessen Argument absichtlich
nie benutzt wird; wie man den Wert von hash
size gering halten kann, indem man Zahler anstelle

TUGboat, Volume 11 (1990), No. 3

von newif s verwendet; Techniken rnit csname und
non-outer dynamischen Allokierungen; Techniken,
um Tabellen zu setzen; einen Blick auf output
rout inen. Zu guter Letzt folgen Arbeitsmethoden,
die man beim Schreiben neuer Makros verwenden
kann.

Wo ist der Umschalter fur griechische
Buchstaben? (S. A. Fulling, S. 371)

Erfahrene Setzer mathematischer Formeln ermuden
bald beim Tippen der Namen von griechischen
Buchstaben. Meist schreiben sie dafur einfache
Makros wie z.B. \za fur \alpha. Hier wird nun
eine Standardubereinstimmung zwischen griechi-
schen und lateinischen Buchstaben vorgestellt, in
der phonetischer ~hnlichkeit Vorrang vor typo-
graphischer gegeben wird. Mit den daraus resul-
tierenden Makros wird es moglich, beliebige griech-
ische Buchstaben durch dreifachen Anschlag zu tip-
pen (oder sogar durch zweifachen, wenn man \z auf
eine Funktionstaste legt).

TransFig: ~ b e r t r a ~ b a r e Grafiken fur TEX
(M. Beck, A. Siegel, S. 373)

Das TransFig Software Paket definiert eine uber-
tragbare Beschreibungssprache fur technische Graf-
iken. Es werden ~ b e r s e t z u n ~ e n von dieser Sprache
in oft verwendete Grafik-Beschreibungsformate ge-
liefert, die dann in eine Eingabe eingebunden wer-
den konnen. TransFig beinhaltet aufierdem einen
ausgesprochen angenehmen Rahmen, um Figuren
in I4T@ einzubinden. Die Grafik-Sprache, die rnit
TransFig definiert ist, ermoglicht den Austausch
von strukturierten und modifizierbaren Grafiken
zwischen verschiedenen Anwendungen. In diesem
Bericht beschreiben wir unsere Erfahrungen mit
TransFig, urn die Notwendigkeit einer standard-
isierten Grafik-Sprache auf Anwendungsebene zu
verdeutlichen und schlagen einige Richtlinien fiir
deren Entwicklung vor.

BASIX: Ein in T@C geschriebener Interpreter
(A. M. Greene, S. 381)

Ein komplett in geschriebener Interpreter fiir
BASIC wurde entwickelt. Er stellt Techniken zum
scannen und analysieren zur Verfugung, die oft-
mals da von Nutzen sind, wo Daten, die keine
Formatierungsvorschriften enthalten, rnit TEX for-
matiert werden sollen. m ' s Expansions Regeln
werden ausgenutzt, um ein Makro bereit zu stellen,
das den Rest der Eingabe als Argument einliest und
nicht mehr aufhort, ihn zu expandieren.

Ein Anfangerleitfaden fur die Eienutzung
von T'EX in einer Textproduktion: Vom
Manuskript zum Bromid (H. Gibson,
s. 393)

Die Absicht dieses Berichts ist es, ein Beispiel
fur eine PC-Anpassung zu geben. rnit der qual-
itativ hochwertige Druckausgabe erzeugt werden
kann. Einer kurzen Beschreibung der Anforderun-
gen, die an Veroffentlichungen des Wellcome Insti-
tutes gestellt werden, folgt eine ausfuhrliche Darstel-
lung der Hard- und Software-Konfiguration, der
Umlenkung der Ausgabe zu Postscript und der Ver-
wendung von elektronischer Kommunikation, rnit
der auf Laserdruckern kontrollierter Text auf eine
Linotronic 300 Lichtsatzmaschine geschickt werden
kann. AuBerdem wird der Wert der Verwendung von
Wordperfect Makros, alternativer Keyboard Lay-
outs und Style Files als eine Oberflache fur die
Eingabe durch Sekretarinnen dargestellt.

Probleme rnit der m/PostScript/Grafik
Oberflache (R. A. Adams, S. 403)

In diesem Bericht werden die unterschiedlichen
Probleme behandelt, die bei der gleichzeitigen Ver-
wendung von TEX und Postscript zur Produktion
von zwei Formelsammlungen auftreten konnen. Drei
solcher Probleme sind besonders wichtig. Das erste
ist es, eine vernunftige Kombination von rnit Post-
Script (skaliertem) Text und den mathematischen
Formeln zu erhalten, die auch noch bei einer 1270
dpi Ausgabe auf einer Linotronic Lichsatzmaschine
gut aussehen. Das zweite Problem ist, eine brauch-
bare Methode zu ersinnen. um eine passende (und
gut ausgerichtete) 2-Farben-Trennung von Text und
Grafik zu erhalten. Das dritte bringt es rnit sich,
TEX Marken rnit Postscript Grafiken zu verbinden.
Die Losungen zu diesen Problemen sind bestimmt
durch die Software, die zu der Zeit vorhanden war,
als sie benotigt wurden (vor ca. 1; Jahren).

'TEX in der Praxis: Kommentare zu einem
4-bandigen, 1400 Seiten starken Werk in
7l&X (S. v. Bechtolsheim, S. 409)

Dieser Artikel handelt von einem Cbandigen, 1400
Seiten starken Werk uber T@. Zwei Aspekte wer-
den behandelt: Als erstes werde ich zeigen, wie die
Produktion eines Dokuments dieser GroBe organ-
isiert wurde. Als Zweites zeige ich Erweiterungen
in m, die ich dazu fur wiinschenswert hielt.

TUGboat, Volume 11 (1990), No. 3

Veroffentlichung von Bucher - 1990 und
dariiber hinaus (M. L. Lafrenz, S. 413)

Die Produktion universitarer Veroffentlichungen
und Handbucher rnit TEX ist etwas Selbstverstand-
liches. Trotzdem verstehen, und dadurch akzep-
tieren, Verlage erst allmahlich die Machtigkeit und
Vielfalt dieses Programms. Einige Verlage verwen-
den bereits m - F i l e s von Autoren, um Kamera-
Fertige Seiten zu produzieren, wahrend andere nur
sehr zogernd diese Moglichkeit in Betracht ziehen.
Der Widerstand von kommerziellen Anwendern,
Makros, Tricks und Techniken auszuplaudern, ver-
hinderte die Akzeptanz von T&i durch die Verlage.

Wir werden die Schulung und Unterstiitzung
von Autoren und Verlegern sowie die Einwirkung
von Offenheit auf den technischen Bereich unter-
suchen. Nur durch die Aufteilung in verschiedene
Gebiete werden wir in der Lage sein, die beste Umge-
bung zu schaffen, um in diesem Jahrzehnt zur
Blute zu bringen.

w-Feh le r rnit einem Praprozessor
diagnostizieren (D. Ness, S. 417)

7&X findet unsere Fehler rnit Leichtigkeit. Aller-
dings teilt es uns diese manchmal auf eine schwer
verstandliche Weise mit. Normalerweise kommt das
dadurch, dafi wir m durch die unbegrundete Ver-
wendung von Irgendetwas irritieren. Ein einfaches
Beispiel: Wenn wir vergessen haben, vor ein Dollar-
Zeichen ein Befehlszeichen zu setzen, gibt uns
im Normalfall eine eigenartige Meldung uber den
mathematischen Modus zuruck. Der vorliegende
Bericht handelt von einem Praprozessor, der uns
vor potentiellen Fehlerquellen warnt, bevor wir un-
sere Files von TJ$ bearbeiten lassen. Besonders fur
Neulinge kann dieses Programm von Nutzen sein.

Zusatzliche TEX Leistung durch die
Verwendung von erweiterten EDT
Editor-Moglichkeiten (L. Williams, L. Hall,
S. 421)

TEX ist auf vielen Computersystemen installiert,
allerdings oft rnit wenig oder gar keinen Gedanken
an die zeitsparenden Vorteile eines leistungsstarken
Editors. Sowohl fur Neulinge als auch fur erfahrene
m e r eroffnet das Arbeiten rnit den erweiterten
EDT Editor-Moglichkeiten den effizienten Gebrauch
von m . Da mehrere Bande dessen verschiedene
Hilfsmittel beschreiben, wurde es notig, diese ent-
setzliche Anhaufung von Material auf ein anwend-
bares Minimum zu reduzieren. In diesem Artikel
werden einzelne EDT-Moglichkeiten vorgestellt, wie
Editor-Initialisierungs-Files und andere Komman-

dos, die, wenn sie richtig angewandt werden, die
Editor-Moglichkeiten von TEX noch steigern.

l&X fur l&Xnische Sekretarinnen
(C . R. Martin, S. 425)

Viele Benutzer sind keine Programmierer oder
Mathematiker, sondern Fachsekretkinnen, Prak-
t iker eines erlernt en Handwerks. Solche Be-
nutzer finden bereits vorhandene m-E ingaben oft-
mals einschuchternd und geheimnisvoll. 7&X fur
T&$nische Sekretarinnen ist gerade fiu solche Be-
nutzer gedacht. Jede Einheit beschreibt einige
Konzepte, wobei diese sofort durch praktische An-
wendungen in einem kurzen Dokument vertieft wer-
den. Schuler konnen sich die Resultate direkt anse-
hen, was zu schnellerem Fortschritt und grofierer
Zufriedenheit fuhrt. Der Kurs fordert eine experi-
mentelle Haltung, die sich in der Praxis gut bewahrt
hat. T&$ fur QXnische Sekretarinnen scheint ein
effizienter Weg zu sein, rnit dem Fachkraften beige-
bracht werden kann, schone Dokumente zu erstellen.

V w Steigerungen zur w-Sprache
(M. Vulis, S. 429)

V m erweitert m um die Unterstutzung durch
skalierbare Fonts und damit um das Erlangen
echter Treiber-Unabhangigkeit. V w bringt TEX
in ein kompaktes System (weniger als 10% seiner
ursprunglichen Grofie), unterstutzt eine Druck-
ertreiber Definitionssprache, vervollstandigt das
m - S y s t e m rnit einer Anzahl von neuen, qualita-
tiv hochwertigen Schriften und implementiert eine
Reihe von Font-Effekten (verdichtete, schraffierte,
umrifiene, rnit Schatten versehene Fonts). Die Un-
terstutzung von skalierbaren Fonts erfordert be-
stimmte ~ n d e r u n ~ e n im TEX Programm, der Syntax
und den Fonts; dieser Artikel beschreibt einige der
~ n d e r u n ~ e n . Da es wahrscheinlich ist, dafi weitere
Anpassungen fur ein skalierbares folgen werden,
hofft der Autor. dafi eine Standardisierung dariiber
gefunden werden kann, bevor Konflikte durch ver-
schiedene Satze von Definitionen entstehen.

Ein konstruiertes Durer Alphabet
(A. Hoenig, S. 435)

Der Autor benutzte METAFONT, urn ein Albrecht-
Durer-Alphabet in Roman Grofibuchstaben zu ent-
wickeln. Obwohl Diirer nur an ein Alphabet in
Roman-Schrift dachte, wurde der Versuch unter-
nommen, ein METAFONT-Prograrnm zu entwickeln,
rnit dem verwandte Fonts erzeugt werden konnen in
einem bold, sans serif, typewriter-ahnlichen, slanted
und casual Stil. (Das letzte ist ein Stil in Anlehnung
an die formlose Roman Buchstabengestaltung, die

442 TUGboat, Volume 11 (1990), No. 3

von Sumner Stone und Neenie Billawala entwickelt
wurde.)

Luzia Dietsche
Rechenzentrum der Universitat

Heidelberg
Im Neuenheimer Feld 293
D-6900 Heidelberg 1
X68@DHDURZ1

Status Reports

T'EX 3.0 and METAFONT 2.0

Nelson H.F. Beebe

Introduction

During the last few years, use of TJ$ has spread to
Chinese, Japanese, Korean, Coptic, Russian, Thai,
Vietnamese, several Indian languages, Persian, Ara-
bic, Hebrew, and all major European languages.
These uses made some of the limitations of
2.x more evident. The most serious of these are
the seven-bit character set and uni-lingual hyphen-
ation. Consequently, Donald Knuth announced at
the 10th Annual Meeting of TUG, held at Stanford
University in August, 1989, that a new version of
rn and METAFONT would be produced to address
problems of multinational support; those versions
were officially released on the ides of March, 1990.
Don resisted calls for more sweeping changes, in the
interests of (a) restricting the impact of the changes,
and (b) getting back to writing The Art of Computer
Programming books.

At the time of writing this report (late June
1990), the two new programs, and their related
=ware and METAFONTware, including BIB'QX,
have been successfully installed on numerous UNIX

variants, using version 5 . 0 ~ of the Web2C transla-
tor, as well as on the IBM PC, VAX VMS, and IBM
VMJCMS. Several commercial vendors announced
release of the new versions at the June TUG meet-
ing. We hope that, by the end of 1990, all TEX
users the world over will have had the opportunity
to upgrade to the new versions.

What's New

The new features of T)-jX 3.0 and METAFONT 2.0
are described in detail in [3]. It is important to

emphasize that, apart from the obscure exceptions
noted in section 12 of that paper, changes should
not affect existing TJ$ and METAFONT files. In
particular, DVI files are unchanged, and old font
files can still be used.

Here is a list of the current support programs
and their versions:

bibtex 0 .99~ pltotf 3.2
dvitype 3.2 tangle 4.0
gftodvi 3.0 tex 3.0
gftopk 2.2 texinfo 3.0
gftype 3.0 tftopl 3.1
inimf 2.0 vftovp 1.0
init ex 3.0 virmf 2.0
m ft 2.0 virtex 3.0
pktogf 1.0 vptovf 1.0
pktype 2.2 weave 4.1

Hyphenation can be applied to input words
coded using only 8-bit characters. This means that a
user with a European keyboard can enter a word like
l i b e r t 6 (the accented letter is a single character)
without losing a hyphenation opportunity. How-
ever, if the word is entered using a control sequence,
l i b e r t \ ' e , as for earlier versions of rn, hyphen-
ation will not be tried.

Michael Ferguson has graciously made avail-
able a change file for TpX 3.0 that translates in-
put accented character sequences to the internal 8-
bit form, and at DVI output time, translates them
back again. This change makes it possible for words
accented with control sequences to be hyphenated,
and seems to be a very valuable extension.

The new ligature mechanism allows letters to
change, based on their position within a word. This
is of particular importance in Arabic, but may be
used in other languages: observe that in normal
handwriting, letter shapes may also vary according
to position, so a handwriting font might usefully in-
corporate such ligatures.

\emergencystretch (section 7 of [3]) allows
better control of excessive white space. IPT)-jX
users in particular should note this new parame-
ter. The I 4 W \sloppy command sets \ to lerance
to its maximum value of 10000, allowing all
lines to be loosely spaced. Under T)$ 3.0,
a smaller \ tolerance value can be chosen and
\emergencystretch can be brought into play when
rn deems it necessary, thus eliminating excessive
white space. The I4m bibliography environment
by default invokes \sloppy; try a two-column bib-
liography first without \emergencystret ch, then
with it and a reduced \ tolerance to see the dif-
ference.

TUGboat, Volume 11 (1990), No. 3 443

The changes to the source code are extensive:
Don Knuth reports that 218 of w ' s 1377 mod-
ules have been changed, and dozens of modules have
been completely rewritten.

It was decided not to issue a new edition of the
W b o o k and the METAFONT~OO~; instead, the new
version of !l&X will be described in a new printing of
Volume A of Computers and Typesetting, identified
by "Ninth printing" on the copyright page. The
paperback version of the TpXbook will be updated
in a few months; it will be marked "Seventeenth
printing". Presumably, volumes B, C, and D will be
similarly updated.

The finder's fee for bugs in the new code is
$10.24. If you discover a bug in the "old" parts
of while you're installing the new version, you
win $163.84.

Why You Should Upgrade

Many people adhere to the "if it ain't broke, don't
fix it" rule, also known as the "if it is not neces-
sary to change, it is necessary not to change" ax-
iom. These apply to many things besides software.
Consequently, some users will no doubt resist an u p
grade, particularly if they see no immediate need for
the multinational features in their own documents.
Don Knuth views these changes as so important that
he wrote [3]: Let u s root out and destroy the obsolete
7-bit systems, even though we were able t o do m a n y
fine things with them.

One of the strengths of W lies in its ability to
produce the same output from the same input, no
matter what the host computer is. Macro writers,
and European TFJ users in particular, will be quick
to take advantage of the new features; if your system
lags behind, you risk being unable to process new
documents and macro files in the future.

port is planned for the m 9 0 meeting in Cork in
September, 1990.

Composite Fonts

Eight-bit characters will simplify Q X input for
many users, but what about fonts? Don Knuth cer-
tainly has no time to sit down and expand the Com-
puter Modern and Concrete Roman families from
128-character fonts to 256-character fonts. Some
commercial fonts already provide larger character
sets, but one still has the problem of finding a DVI
driver that can support them.

The solution to these is composite fonts [4], also
known as 'virtual' fonts. I'd like to take this oppor-
tunity to issue a plea for a name change; 'virtual' is
not very descriptive, while 'composite' is, and has
the advantage of already being in wide use. Also,
the term 'virtual fonts' has been in use in my DVI
drivers since 1986 with quite a different meaning.

Composite fonts provide for the construction of
new fonts, each character of which may be made
up of pieces taken from one or more other (possibly
composite) fonts, where the pieces are positioned by
commands in the DVI language.

Composite font support requires either a DVI-
to-DVI program that can convert a DVI file using
composite fonts to one that does not, or addition
of new code in DVI drivers. Since a lot of existing
software is affected by this new feature, it is going
to take considerably longer to get such programs
developed and distributed.

References

[I] Nelson H.F. Beebe. Character set encoding.
TUGboat, 11(2):171-175, June 1990.

[2] Janusz S. Bien. On Standards for Computer
Modern Font Extensions. TUGboat, l l (2): 175-

Character Set Issues 183, June 1990.
[3] Donald Knuth. The New Versions of TFJ and

We need to exercise great care in the use of eight- METAFONT. TUGboat, 10(3):325-328, Novem-
bit input in TpX documents that are intended to be ber 1989.
exchanged with others in their original input form,

[4] Donald E. Knuth. Virtual fonts: more fun for
because positions 128. . .255 in the character sets do

grand wizards. TUGboat, 11(1):13-23, January
not have universally accepted assignments. Without
such an agreement, we seriously risk the loss of the

1990.

wonderful m file portability that we have hereto-
fore enjoyed. For detailed discussion, see [I, 21 and
references cited therein.

Because of the gravity of the character set prob-
lem, TUG and several European groups have initi-
ated a joint effort to rapidly produce a proposed
character set assignment that can be used for the
exchange of TpX documents. An initial progress re-

o Nelson H.F. Beebe
Center for Scientific Computing and

Department of Mathematics
South Physics Building
University of Utah
Salt Lake City, UT 84112 USA
Tel: (801) 581-5254
Internet: BeebeQscience .utah. edu

TUGboat, Volume 11 (1990), No. 3

PTEx 2.10

Frank Mittelbach

Remarks on IPw 2.10 + 3.0
At the TUG meeting in Texas, I was able to an-
nounce the availabilty of the new font selection
scheme which will be incorporated in the new I4m
and explained its features. Further work is ongoing,
including the redesign of the internal style interface
and a new attribute concept. A more detailed talk
about this project will be given at the Cork meeting
in September.

o Frank Mittelbach
Electronic Data Systems

(Deutschland) GmbH
Eisenstraae 56 (N 15), D-6090

Riisselsheim, Federal Republic
of Germany

Tel. f 4 9 6142 803267
Bitnet: pzf 5hzQdrueds2

International Reports

DANTE, Deutschsprachige
Anwendervereinigung w e.V.

Joachim Lammarsch

On April 14, 1989 in Heidelberg, DANTE (the
Deutschsprachige Anwendervereinigung T 'X e.V.),
was founded. I was elected chairman of the
society, and we also elected a vice chairwoman
(Mrs. G. Kruljac-Dronskowski, MPI Stuttgart), a
treasurer (Mr. Friedhelm Sowa, Research Center
of the University of Diisseldorf), and a secretary
(Mrs. Luzia Dietsche, Computing Center of the Uni-
versity of Heidelberg). By May of this year, the
user group had about 500 members in West Ger-
many, Austria, Switzerland, East Germany, France,
Netherlands, Luxemburg, Belgium, the USA, and
Canada.

The principal aim of the society is to encourage
advice and cooperation among German-speaking
TE,X users. But this is not the only intention. The
user group cooperates with other related national
and international TEX groups; and, as well, DANTE

represents the interests of the German-language TE,X
users to TUG. That is done in coordination with

other European TEX groups and their national in-
terests.

For its members, DANTE distributes a variety
of software, including complete Q X systems with
common macro packages for PCs and Ataris, META-
FONT, and drivers. In the future, TEX for Macin-
toshes and Amigas will also be distributed. Anyone
who has e-mail access can get some of the software
via the FTP server in Stuttgart (129.69.1.12) or via
LISTSERV@DHDURZI.EARN.

Twice a year a general meeting (held together
with the annual conference) takes place for all in-
terested m e r s . During these meetings some ex-
perienced members of DANTE hold courses for free
for everyone who wants to attend. Another DANTE

activity is to organise training and education for be-
ginners. Together with this activity, DANTE sup-
ports its members with information about all that
is going on in the world: because a lot of in-
terested m e r s have no e-mail access, DANTE dis-
tributes m h a x and U K W via diskettes.

Last but not least, a quarterly newspaper for
members is published, with articles about new
macros, style files, dates, reviews, and so on.

In addition to this, there are a lot of other ac-
tivities and plans to spread T@ and the knowledge
about it, for example, by publishing articles in the
most widely circulated computer journals in Ger-
many, or by bringing m into high schools to stu-
dents and teachers.

Institutions as well as individuals can become
members: universities, publishers, computer compa-
nies, private persons, students, etc.. to name but a
few. Dues differ for the various categories.
For more information, please contact:

DANTE, Deutschsprachige
Anwendervereinigung TEX e.V.

c/o Research Center
Im Neuenheimer Feld 293
D-6900 Heidelberg 1
Federal Republic of Germany
Bitnet: DANTEQDHDURZI . EARN

o Joachim Lammarsch
Chairman of DANTE

TUGboat, Volume 11 (1990), No. 3

News From and About GUTenberg

Bernard Gaulle

[Editor's note: The following report was read by
Christina Thiele at the Texas A&M meeting as
Bernard was unable to attend.]

As this is the first time I've been invited to talk
about GUTenberg, it's perhaps necessary to explain
why we decided to found GUTenberg two years ago.
There were many reasons, but here are only the most
important ones.

During the past few years we had organized
more or less informal one-day meetings which were
very much appreciated. People began asking for
more and closer contacts; there were telephone calls
frequently requesting help for access to a (or
m- re la ted products) distributor. Though TUG-
boat contained many useful pieces of information, it
seemed specially devoted to experienced TJ$ users.
Another important reason was of course that we
felt that problems related to francophone users re-
mained unsolved. And on other fronts, professionals
were beginning to use lJ$ and METAFONT. And
so, we "officially" founded GUTenberg less than
two years ago with many ideas but only two pre-
cise ideas: (1) to create our own journal (Les
Cahiers GUTenberg), and (2) to continue to or-
ganize meetings.

In the meantime. we opened a list for discus-
sions (GUTQFRULMI~ . BITNET) under LISTSERV, and
we promoted Michael Ferguson's Multilingual m,
as well as the use of LATEX by beginners.

Last year at our meeting in Paris, public do-
main PC diskettes were announced. We discovered
at that moment the first French book on ?QX (Le
petit livre de by Raymond SQoul), which is ex-
cellent. This year we worked especially on the de-
sign of a French-speaking style. We are now ready to
distribute "running" versions of M L W for various
UNIX systems and machines.

?$X 3.0 brings us many useful new features
(and we thank DEK for that), but it also raises
again the problem of hyphenating accented words
(words containing accented letters) which are inten-
sively used in French. There are two solutions for
this. One is to use virtual fonts - it's certainly
THE solution for the future, but it now looks a lit-
tle complicated. The second solution is to use the
(transitional) bypass developed by Michael Ferguson
(called Multilingual m) . which is simpler, ready
to use, and will probably be valid for the next few
years. GUTenberg is now examining these two ways
for its own distributions.

One related problem to solve as quickly as pos-
sible is the place of accented letters within the sec-
ond part of the ASCII code. Facing this particular
problem (and also many others), GUTenberg wants
very much to find (at least) a European solution.
This procedure will always be adopted by GUTen-
berg when multilingual solutions are possible. More
generally we prefer to work as closely together as
possible with other ?QX user groups that share our
problems, ideas, goals, etc.

GUTenberg memberships are growing rapidly
(200 members the first year, 400 or more planned for
the second, right now: 350). In spite of this good
position, fewer than 20% of our members are also
TUG members and only an extremely small portion
of them volunteer to help. The lack of gurus
seems to be specific to our group - or perhaps they
are only unknown today?

Regarding courses, GUTenberg is still very
young. We have only organised one-day tutorials,
held before or after our annual meetings. There
have been a few in-house courses, but none which
were organised by GUTenberg.

GUTenberg is now at a crossroads: one way
is to let things be done quietly; the other is more
difficult. We have to move into higher gear, with
more projects, more volunteers, more professionals,
more young members, etc. This is a challenge that
GUTenberg would be pleased to share (and win)
with other 'TEX user groups.

Thank you.
For more information, contact:

Association GUTenberg
c/o IRISA
Campus de Beaulieu
F-35-42 Rennes Cedex
France

o Bernard Gaulle
President of GUTenberg

TUGboat, Volume 11 (1990), No. 3

NTG's Second Year

Kees van der Laan

[Editor's note: The following report was read by
Barbara Beeton at the Texas A&M meeting as Kees
was unable to attend.]

Organizational

NTG (Nederlandstalige TEX Gebruikersgroep), the
Dutch-language oriented rn users group, has ex-
isted legally since the fall of 1989. At the moment,
we have 15 institutional members (representing 45
people) and some 50 individual members, making
roughly a hundred members.

Members received minutes of the spring and
fall meetings, with much information collected in
appendices, as well as a printout of the renewed
membership database. At the meetings, organiza-
tional aspects (budget, etc.) were discussed, and
some presentations were also given (including Vic-
tor Eijkhout on "Unusual paragraph shapes", Nico
Poppelier on "SGML and TEX at Elsevier", Johannes
Braams on "Various 'network' aspects"). Roughly
40 members were present at each meeting.

The listserver TEX-NLQHEARN has been heavily
used for information exchange and for asking ques-
tions. The fileserver TEX-NLQHEARN contains codes
useful for the Dutch-speaking community. The Uni-
versiteit van Utrecht (RUU, for short) has made
a second (Internet) fileserver available. The NTG
board can be reached via: NTGQHEARN.

The first year was characterized by getting
started, the second by getting organized. Now we
face the difficult task of organizing continuity of
NTG: that is, to get a renewal process working for
election of (two) board members every year, charged
with preserving an active NTG. Of course the Work-
ing Groups are the basis and therefore they must
be stimulated. Work of individuals also has to be
encouraged. A structural activity for continuity is
"teaching the teachers". It is hoped that contacts
with other user groups will also encourage continu-
ity.

Cooperation with other (European) rn user
groups has resulted in:

1. inviting a representative of other users groups
to the (open) meeting(s) at no (conference and
one course) costs

2. the secretary of every user group is a member
of the other user groups by default (information
exchange is organized)

3. members of one group are considered members
of other groups with respect to admission fees
for meetings

4. sharing know-how (exchange of teachers, speak-
ers, etc.)

With respect to TUG, we welcome the realization of
the possibility of joint memberships.

Working Group Activities

Although we mainly operate
in working groups - which help structure the dis-
cussion and stimulate cooperation- much work has
been done on an individual basis. As an example of
the latter one can think of the article "Typesetting
Bridge via (plain) TJQC", which was published in
TUGboat 11, no. 2, and was presented at GUTen-
berg '90 in Toulouse.

Education

A survey of (local) courses and courseware is
maintained. Tools for preparing and maintaining
(course) transparencies are in preparation. A set-
up of courses has been made for the "NTG Days",
with the idea of worldwide modules in mind. A con-
tribution to Child's discussion of what every mod-
ule should contain, has been made. Some Dutchies
teach at other TUG meetings. For example, Kees
van der Laan has taught the SGML class at both
Stanford and the upcoming meeting at Cork; Victor
Eijkhout will be giving the advanced course at
Cork as well.

Guidelines for Authors

A report (Journal Style Guidelines, RC RUG Re-
port 26), has appeared. It can be obtained by writ-
ing to: Rekencentrum RUG, Landlevem 1, NL-9700
AV Groningen, The Netherlands.

PCs

Some evaluations of public domain (PD) MS-DOS
programs have been made. An Atari PD set is
available upon request. It looks like this Working
Group will become more active this year, which is
very much appreciated. Cooperation with other user
groups is bound to be beneficial.

Fonts

A chess font has been developed, but not published.
Note: this work has possibly been superceded by the
published work of Zalman Rubinstein, TUGboat 10,
no. 3, 387-389.

TUGboat, Volume 11 (1990), No. 3

NTG Days

The first "NTG Days" (June 1989) was organized
by RUU. Roughly 80 people attended. This year the
theme is SGML and m. The organization is done
by NTG and SGML Holland. The number of courses
offered during these days has been increased from 2
to 7. We now have multi-day courses, as opposed to
the one-day courses last year. This year's meeting
will be on 31 August, with courses to be held the
week before and the week after the meeting.

SGML

An introductory paper (appendix to minutes) was
prepared and presented at the second SGML Holland
seminar (October 1989, Amsterdam) and at GUTen-
berg 90 (May 1990, Toulouse).

Dutch Aspects

Various .sty files have emerged for report,
article and letter. Moreover, articles have been
prepared on A4, international U r n , and Babel.
These articles have been submitted to TUGboat,
and some have already appeared in TUGboat 11,
no. 1 and no. 2.

Communication

Fileservers - TEX-NLQHEARN and RUU's internet
server - are maintained. Problems of what to store,
how (coded?) to store, and how to retrieve, are
under study. We have a floppy distribution ser-
vice: floppies with information (minutes and appen-
dices) as well as programs (those available on the
fileservers), especially for those members who don't
have access to electronic mail.

Summary

At the last meeting it was urged that NTG should
pay more attention to public relation activities, e.g.:
"helicopter talks" such as "What is rn all about
(off the shelf)", and a real survey course on m,
U W , METFIFONT, Postscript, SGML and how these
are related.

Furthermore, attention will be paid to public
domain PC versions, not so much to develop them
ourselves but to get the material, exercise it and
organise dissemination. The idea of an NTG report
series has also been proposed.

o Kees van der Laan
President of NTG

Report from the Nordic T$$ Users Group

Roswitha Graham and Jan Michael Rynning

The Nordic countries have a tradition of close coop-
eration, as well as having a common cultural back-
ground. Swedish, Danish and Norwegian are much
alike, and Icelandic is by origin connected to the
Norwegian languages. Finnish is entirely different
but there is a large Swedish-speaking minority resi-
dent there.

The Nordic T@ Users Group was officially
formed in Copenhagen in 1988, covering the Nordic
countries of Denmark, Iceland, Norway, Sweden and
Finland. One informal Nordic meeting had already
taken place beforehand in Stockholm in 1985, with
the purposes of: discussing the future of and
solving common Nordic problems as the input of
national characters, how to use U r n when using
national characters, correct hyphenation and proper
placement of accents. The result was some more na-
tional versions of m 8 2 under VAX-VMS. T@ is
still frequently used on VAX-VMS.

When T@ was ported to personal computers
with output on laser printers, membership in the
User Group increased. Postscript devices became
the de facto standard, followed by HP.

W is mainly used by staff and students in aca-
demic and research environments, and is well sup-
ported at all large universities. We can also report
that there are also a few companies and private users
of rn.
Networks, Distribution and Support

All universities in the Nordic countries are con-
nected to the NORDUNET (Nordic University Net-
work), centrally paid for and free for academic use,
with communication over 64kbit/s leased lines, us-
ing TCP/IP and DECNET protocols. The TCP/IP
network is part of the Internet. Stockholm/KTH
is the central node with gateways to EARNIBitnet,
SPANIHEPNET and UUCP. These networks give
easy access to archives all over the world.

ftp. kth. se (120.237.72.201) is an FTP archive
with a current copy of the labrea . stanf ord . edu
archive plus other some other st& from different
archives and some local stuff. Other local archives
exist at various departments and universities.

A mailing list (NordicTeXQkth. se) has recently
taken over communication of news, problems and
questions from different sites. support is de-
centralized to local systems groups at the different
sites. There is a central register kept of experts
or contacts at different sites. Local courses, hand-

TUGboat, Volume 11 (1990), No. 3

outs and instructions are offered by the various sites
and made available through the schools. TEX for
personal computers has mostly been distributed by
dealers (PC TEX, p m , Textures), but we are also
looking into what is available in the public domain.
Special adaptations have been made at KTH/NADA
to use Textures with direct entry of national charac-
ters.

Trends and News

An increasing interest in rn has been reported
from math departments, while other desktop pub-
lishing software is taking over at other places. The
number of members of the Nordic rn Users Group
has been reported stable during the last year.

One trend seems to be that w users are mov-
ing to UNIX workstations (SUN, DEC, HP. . . .) from
mainframes and micro computers.

Increases in book and journal production with
m have also been reported and typesetting ser-
vices are now offered by the University of Oslo
(Linotronic, Rism (IBX) and UNI.C/Copenhagen
(Linotronic) in Denmark.

Most sites have upgraded to TEX 3.0, and are
now waiting for 8-bit fonts so they can make full use
of it.

Wishes for 1990

The strongest wish is for an &bit font standard and
Greek and math symbols fonts to match Times Ro-
man. Best wishes go for the I 4 W project. We wish
to support by all means a world-wide TEX.

o Roswitha Graham
President, Nordic 'I)$ Users

Group

o Jan Michael Rynning

in the UK

Malcolm Clark

It is readily apparent that only a portion of rn ac-
tivity becomes "institutionalised". A great deal of
w i n g goes on at an everyday, unexceptional, back-
ground level. Thus the description here is likely to
be only a partial description of what has happened
in the UK's portion of the world in the last
year. If anyone feels aggrieved because they have
been left out, I apologise. It was inadvertent.

UK TEX Users Group

The group was founded in 1989 (see [2]) to be a fo-
cus for TEX and m - r e l a t e d activities in the UK.
The term "7$3" is used by the Group as a short-
hand not only for the TEX program itself. but also
for the many other related pieces of software, such as
@ w , A M S - W , METAFONT, the Computer Mod-
ern typeface, WEB. output device drivers, . . .

Among the aims of the Group was a desire to
encourage the work at Aston on the archive and
the UK bulletin, particularly in their efforts to
distribute to people not on the academic networks.
Equally encouraging is its wish to cooperate with
TUG and with the other European groups such as
GUTenberg, DANTE, NTG and the Nordic Group.
Together with these other groups, the UK !l&X Users
Group seeks to ensure adequate recognition of Euro-
pean needs at TUG. It also seeks to encourage the
development of other European groups in Poland,
Hungary and Czechoslovakia.

The Group has already organised several one-
day meetings on a variety of topics. These have
included contributions from renowned speakers, as
well as from the UK rn community at large (note
that these are not necessarily mutually exclusive
groups). There were two meetings of the group in
the period between the Stanford TUG Conference
and this Conference.

The first of these, at Aston University (Birm-
ingham), was entitled "Fonts: how they are cre-
ated; how they can be used". Ten speakers intro-
duced topics ranging from the creation of inscrip-
tions in stone, right through to the esoteria of co-
ercing METAFONT to produce Postscript. In her
review of this meeting, Carol Hewlett [3] noted that

didn't get mentioned by the speakers until af-
ter tea'. The meeting organizers have tended to take
a very eclectic view of the topics which will interest
TEX users, perhaps feeling that an introduction to
the wider world of publishing and typesetting would
be no bad thing.

TUGboat, Volume 11 (1990), No. 3

The other meeting was on "Bibliographies and
Indexing", and was held at the London School of
Economics. This again followed the "policy" of
inviting speakers who were specialists in their fields,
but not necessarily 7&X- or LKQX-wise, and at-
tempting to balance them with the nitty gritty of
more technical material (e.g. [4]).

Immediately after the TUG Conference, the
Group held its first workshop, on "Fonts and font
families". This was held at the University of Wind-
sor. As a workshop this was limited to a smaller
number of participants, and approached its topics
much more intensively. This time it was completely
in the hands of the wizards (Chris Rowley and Do-
minik Wujastyk) .

In order to expand the range of meetings, the
Group proposes to continue the one-day general
meetings and the one-day in-depth workshops, but
to augment these with visits to, for example, pub-
lishers, book and journal producers, typesetting
hardware manufacturers, typographers, and basi-
cally anyone who can help us increase our knowl-
edge of all aspects of electronic publishing and doc-
ument preparation. Next year will see a significant
departure in meeting style with the introduction of
a two-day conference on "Book production".

The Group has also been active in creating spe-
cialist "Working Groups" with interests such as hy-
phenation, fonts and METAFONT, implementation
issues, BIBTEX, the other J.4W tools, Postscript.
and standards. It is currently examining the pro-
duction of a newsletter for the membership, but as
an interim, all members of the group receive the
m i n e newsletter. Negotiations have taken place
with publishers to enable the Group to supply 'l&X-
relevant books to the membership, at a discount.

The Aston Archive

It is difficult to separate the work of the Archive
(see [I]) from other 7&X activities in the UK. The
same people crop up actively in several different
roles. The Archive seems to be maintaining its pre-
eminent position as the largest 7&X-archive. Never-
theless it is still plagued by the vagaries of charac-
ter translation at the Rutherford Gateway. At least
there has been grudging acceptance by Rutherford
that the problem is directly related to their Gateway.
A small advance, but an advance. The last year has
seen some reorganisation of the archive's structure,
but the sheer volume of material can make finding
the right files rather difficult. Since the JANET net-
work in the UK does not permit the "anonymous
FTP" which the rest of the world seems to enjoy, this

browser. One welcome innovation has been the in-
troduction of a mail-server type service, which has
an interface like lots of other mail servers. Thus
file transfers can be accomplished over e-mail as
well as NIFTP. Recently the requests to the Archive
have been monitored to see what is going where.
This confirmed that a great deal of material was
being shipped out, but to everyone's surprise (well,
mine), a large proportion of the information was be-
ing shipped to Europe. So, despite the apparent
Rutherford problems, the Archive is beginning to
accomplish its destiny.

Of course, the success of the Archive could not
be achieved without the devotion of the Archivists,
Peter Abbott (himself an Archivist), and the many
people around the world who submit material to the
Archive and help to keep it at the forefront of 7&X
software.

The U K W digest is also an Aston activity, al-
though in theory it has little to do with the Archive.
Strangely enough, the Archivists seem to answer
many of the queries. The digest continues to appear
with welcome regularity (despite a few hiccoughs
from time to time, common to all electronic distri-
butions). The size of the digest seems to have stabi-
lized, and the range of questions varies between the
straighforward "does 7&X run on the PC yet?" to
the esoteria of METAFONT and subtle macros.

References

Peter Abbott. The U K W archive at the Uni-
versity of Aston. TUGboat, 10(4):675-680, 1989.
Malcolm Clark. Olde worlde 'I)jX. TUGboat.
10(4):667-673, 1989.
Carol Hewlett. uk'l&Xug meets again. m i n e ,
10:18-19, 1990.
David Rhead. Towards B I B T ' style-files that
implement principal standards. m i n e , 10:2-8,
1990.

o Malcolm Clark
Chairman of the UK Users

Group; Aston Archivist

can be a stumbling block to the beginning archive

TUGboat, Volume 11 (1990), No. 3

'IjijX in Europe

Malcolm Clark

Great things have happened in Europe in the last
year. It would be good to think that TfjX might
have played some small but significant role in the
liberalisation of Europe. T@'s ability to put the
powen of the printing press back into the hands of
the people gives it some of the hallmarks of the tools
needed for democracy. But perhaps we hope for too
much.

I was lucky enough to visit Poland in the au-
tumn of 1989 at the invitation of Janusz Bier?, and
to be entertained both by him and by other rn
colleagues. There can be little doubt that there is
a surprising amount of TfjX activity in the coun-
try. This was reinforced by Marek RyCko7s paper
at Tj$89 in Karlsruhe, where he won the best pa-
per award, and more recently by Bien's paper [2] in
TUGboat. Although "traditional" computing power
("mainframes") is present, its use has tended to be
rather controlled. The availability of personal ma-
chines however places comparable computing power
into many hands. A more powerful limiting factor
is output devices and their consumables. But any-
thing written now is likely to be out of date very
soon.

Elsewhere, an officially recognised TfjX group
has been established in Czechoslovakia (~eskoslo-
venskC sdruieni uiivatelfi m u) , as the result of
the merger of two informal groups. In Hungary,
another group- " H u n w ' -has come into being.
This group is fortunate to have e-mail connection
and regularly receives Tj$hax. It is hoped that
Hungary can be supplied electronically with much
relevant public domain m w a r e .

Recently news broke that Poland is also to join
the electronic mail domain. Not only will this sim-
plify communication, but again it will allow the
transfer of m w a r e . The re-unification of Ger-
many will presumably lead to the integration of elec-
tronic mail within that country. Rumour has it that
shortly the Soviet Union (or as much of it as is left)
will also be connected by e-mail. (The spooks in
Washington will have many happy hours decoding
hexed m-f i les!)

As the accompanying reports from DANTE,
GUTenberg, NTG and the Nordic group have made
plain, there is a great deal of European activity. The
meetings of DANTE and GUTenberg in particular are
well-attended and encompass a wide range of Tj$
subject matter and expertise. The GUTenberg at
Toulouse provided a most useful forum for represen-

tatives of the European groups to discuss common
problems, and to meet the TUG President, Nelson
Beebe. This was a particularly constructive meet-
ing.

In addition to the conferences and meetings
organised by the "local" groups, EuroQX89 was
held at Karlsruhe in September. This was a well-
attended conference [6] which provided another use-
ful addition to the accumulation of rn knowl-
edge and expertise. Apparently painlessly run,
and with some fine social events - the organisers,
Anne Briiggeman-Klein and Rainer Rupprecht de-
serve much praise. I keenly believe that the Euro-
pean T@ conferences are essential for the long-term
viability of m, TUG and Tj$-in-Europe. With-
out these meetings, and without participation from
the whole European catchment we will all be a great
deal poorer.

Of course, there are other activities which are
relevant to us: the "Raster Imaging and Digital
Typography" Conference in Lausanne [l] covered
subjects close to the hearts of many of the m-
literate. One outcome of this was the DIDOT project,
a project designed to establish training in numeri-
cal typography. If this becomes established it could
help to increase cooperation between those involved
with traditional and digital typography.

Several more books have appeared in Europe.
Norbert Schwarz' Einfurung in T)j% was translated
into Introduction to l&X [8] by himself and his col-
league Jost Krieger. There has also been a iYT)j%
Cookbook by Theo de Klerk [7]. And of course, even-
tually the m 8 8 Conference Proceedings have a p
peared ([4]). Not before time! The Cahiers GUTen-
berg continue their high standard (even including
colour printing now), and have this year been joined
with DANTE'S Die m n i s c h e Komodie. The last
year also saw another edition of m ine-number
10.

Lest complacency set in as we review our past
achievements, let's consider what has not happened.
There seem to be no organised user groups in either
Italy or Spain, despite sporadic activity in the past.
It may be that the formation of user groups is not
the best way forward for these countries. With a
few exceptions, rn makes slow progress against
the yuppie tide of WYSIWYG. We still have not
managed to get our act together to explain why
markup is a good thing. And this when Postscript,
the write-only typographic markup system, contin-
ues its dominance of the page description language
arena. My WYSIWYG chums still tell me that Post-
Script is wonderful, but that l&X is too difficult!
Equally, the faceless SGML, rescued from the dol-

TUGboat, Volume 11 (1990), No. 3 45 1

drums by the US Department of Defense and the
CALS initiative, is hailed as a great leap forward.
A markup meta-language, it can describe the struc-
ture of a document, but requires some friendly help
to let that structure be realised on a sheet of paper
(or a screen). And where does that friendly help
often come from? - 7JjX or I P W . But those who
embrace SGML shy away from I4W. What is the
difference? -simple: standards. The way of the fu-
ture is through the standards world ([3, 51). We join
in or become a backwater. C'mon in, the water's
lovely!

References

[I] Jacques Andr6 and Roger D. Hersch. Raster
Imaging and Digital Typography. Cambridge
University Press, 1989.

[2] Janusz Bien. On standards for computer modern
font extensions. TUGboat. 11(2):175-182, 1990.

[3] Malcolm Clark. Standards. !@$line, 9:1, 1989.
[4] Malcolm Clark. m: Applications, Methods,

Uses. Ellis Horwood Publishers, 1990.
[5] Malcolm Clark. Tripping over our own feet.

m i n e . 10:1, 1990.
[6] Malcolm Clark. TUG10 and m 9 O : edited high-

lights. m i n e , 10:13-15, 1990.
[7] Theo de Klerk. Cookbook. Addison-Wes-

ley, to appear.
[8] Norbert Schwarz and Jost Krieger. Introductzon

In addition to final testing of = and META-
FONT, some of the auxiliary sources, particularly
METFtFONTware, need to be brought up to date. In
the past, I have had difficulties getting the latest ver-
sions of some software, being at a site without FTP
access. Dean Guenther has kindly sent me updates
by mail from time to time. and Barbara Beeton has
been mailing all the site coordinators diff files for
updates to the main programs, which I've used to
piece together the current test versions. Neverthe-
less, I've always felt hampered by the lack of direct
access to the Stanford sources. Fortunately, this sit-
uation should improve soon, as I am assured that the
University of Manitoba will in the next month or so
be connected to Internet with FTP access. Then it
should be much easier to keep all the sources up-to-
date.

I have also experimented briefly with a large-
memory version of =, based on values in the UNIX

distribution (memrmax = 262140). There appears to
be a slight tradeoff in speed (about 9% slower), but
the "big" 'l&X seems to run with no problems (it
passes the t r i p test).

o Craig Platt
Dept. of Math & Astronomy
University of Manitoba
Winnipeg, Manitoba
R3T 2N2 Canada
Bitnet: platt@ccm.umanitoba. ca

to W. Addison-Wesley, 1990.

o Malcolm Clark
European Coordinator

VMS Site Report

David Kellerman

Site Reports

MVS Site Report

Craig Platt

I am happy to report that MVS TEX 3.0 and META-
FONT 2.0 have passed the t r ip / t rap tests. Further
testing remains, but I hope they will soon be ready
for distribution. The current distribution, available
from Maria Code, remains at T)$ 2.9 and METR-
FONT 1.3, so if you want to order the new version,
be sure to specify "W 3.0" on your order.

First, let me mention some news from the TUG90
conference. A quick informal survey during the site
coordinators' reports showed that about two-thirds
of those present used TEX on a VMS system. A
large majority were IP= users. Most were not sure
where they got =. Maria Code, DECUS, Inter-
net FTP, and commercial distributions each got only
a few responses. T'X travels in mysterious ways!
Postscript printers are by now the most common
output device, with LN03s sliding into a distant sec-
ond place. A handful of users have VAXstations.

The software developments are too numerous
to mention in detail, but let me hit some of the
high points. The DECUS distribution, assembled by
Ted Nieland, remains the most accessible and broad-

452 TUGboat, Volume 11 (1990), No. 3

ranging source of public-domain VMS m w a r e in
the United States - it's available on a variety of
media from the DECUS library (219 Boston Post
Road, BP02: Marlboro, MA 01752-4605; 508-480-
3635), and from your local librarian, if there is a DE-
CUS Local User Group in your area. In Europe, the
archive at Aston University, Birmingham, provides
the largest and best-organized collection of VMS
w w a r e , and they are currently testing an encod-
ing scheme that should improve their ability to dis-
tribute files across gateways without corruption (Pe-
ter Abbott; Computing Service; Aston University;
Aston Triangle; Birmingham B4 7ET). For those
with Internet access, Don Hosek has been collecting
and organizing a large VMS archive on the YMIR
node at Harvey Mudd College, Claremont, that in-
cludes his latest VMS adaptations of W w a r e and
ZPWware (dhosekQymir . claremont . edu) .

All the sources listed above should include ver-
sions of 3.0 by the time you read this, from work
done by Brian Hamilton Kelly and Don Hosek. Also
of note, good DECwindows previewers are start-
ing to appear. XDVI appears to currently be the
best public-domain implementation (DECUS distri-
bution, YMIR archive), and both ArborText and
Northlake Software now offer commercial products.

Finally, I want to discuss a more general issue:
with llJQi development work now literally spread
around the world, most information related to T&jX
is exchanged electronically across computer net-
works via mail, newsgroups, and file transfers. If,
like many VMS sites. you have no decent network
connections, your sources of information are limited.
and often out of date.

Northlake Software was faced with this prob-
lem about a year ago. Briefly, we solved it by
getting a copy of the DECUS UUCP software (an-
other public-domain DECUS library offering). and
setting up a telephone connection to the UUCP net-
work. The DECUS UUCP documentation is excep-
tional for public-domain software; installation and
net management require care, but not deep sophis-
tication. We use the UUNET node for our access
point. UUNET Communication Services is a non-
profit corporation that provides mail transfer and an
Internet gateway (3110 Fairview Park Drive, Suite
570; Falls Church, VA 22042-4239; 703-876-5050).
For simple mail and newsgroup access. you can ex-
pect to pay about $50-60 per month for their ser-
vices and telephone charges. The lack of FTP file
transfers is the one real limitation to this solution,
but the price and level of complexity are about right
for us.

There are variations to this approach you might
want to consider. We chose UUNET for its relia-
bility and good Internet connections; if you have a
friend at a local university with a UNIX system, you
may be able to wrangle a connection for free. Low-
speed modems are adequate for light use; we added a
Telebit T2500 when our traffic started increasing. If
you get started, yours probably will, too - welcome
to the net.

o David Kellerman
Northiake Software
812 SW Washington Street,

Suite 1100
Portland, Oregon 97205 USA
Usenet: nlsQdavek

D a t a General S i te Repor t

Bart Childs

TEX 3.0 and METRFONT 2.0 have been installed
without problem. The wisdom of Don's design is
shown by the ease of installation. Few modules
required change. Most of them were due to the
strictness with which VS/Pascal interpreted Pascal's
rules. The file type tex t must be used with readln
and writeln. It does not allow the use of e ight -b i t
ASCII with t ex t files.

The current version includes drivers for
Postscript, LaserJet. QMS, Imagen, and Date Gen-
eral printers. We are working on installing Tom Ro-
kicki's Postscript driver.

We have created a new driver for the vanilla
Canon engine. It is written in C-WEB and is currently
being tested. It seems to be quite good. As soon as
we make a change file for the HP-LaserJet, we intend
to distribute it too.

The European distribution of our software is
being assisted by Dr. Wolfgang Slaby at Eichstatt.
This help is greatly appreciated.

o Bart Childs
Dept. of Computer Science
Texas A & M University
College Station, Texas 77843-3112
Internet: bart@cssun.tamu. edu

TUGboat, Volume 11 (1990), No. 3

Prime 50 Series Site Report

John M. Crawford

Prime sites running the PRIMOS operating system
can contact my office to obtain a tape. The
QX tape we send out generally reflects the latest
software revisions available from Stanford and con-
tributing users. It's a changing beast! currently we
have available version 3.0 and METAFONT ver-
sion 2.0. With this new version of rn we've also
added some new system features such as support for
input file search lists. The rn program comes in
two sizes, one of which has greatly expanded storage
capabilities.

The Tj$ tape, as it currently ships, contains
a substantial collection of work. All the standard
=-related software, as available from Stanford
University, can be referenced in source form. I 4 m
and A M S - W are easy to install. The programs
in support of WEB, rn and METRFONT (commonly
called W w a r e and METAFONTware) are available
to execute. We ship the standard fonts (in t f m and
pk form) of the Computer Modern family, and in-
clude, naturally, those fonts that support I4W and
AMS-TEX.

Several device drivers are running under PRI-
MOS, and many friendly Prime sites (primarily aca-
demic institutions) have returned their work to us
for inclusion on the distribution tape. A BIB^
port to PRIMOS and several site documents have
also been added to the tape by contributing users.
We've tossed in some other goodies and have ended
up with a 'IjEX distribution tape for PRIMOS that
requires "extra length" tape media. Many sites have
reported the installation goes well. It's always nice
to know we have happy 7&$ users in the world of
PRIMOS.

o John M. Crawford
Computing Services Center
College of Business
Ohio State University
Columbus, Ohio 43210
Internet:

craw4d0prirne.cob.ohio-state.edu

U N I X ~ Site Report

Pierre A. Mackay

The full suite of and METRFONT programs has
been updated to match the most recent sources on
labrea . stanf ord . edu. We are now delivering TEX
version 3.0, META FONT version 2.0 and the versions
of all the support software have been changed to
match. The choice of a proper official version of
I 4 m is a bit problematic, but we have chosen to
adopt Dominik Wujastyk's upgrade of 1p la in . tex
in order to get the full advantage of QX 3.0. In ad-
dition, sp la in . tex has been brought into conform-
ity with 1plain. tex. It had drifted pretty badly
over the past three or four years. I am deeply in-
trigued by the notion of multilingual slides all set in
magnifications of cmssq8, with perfect hyphenation.

The new WEB2C owes a great deal to Karl Berry,
who not only did the major part of the work for the
upgrade to version 3.0, but also provided the much
needed change files for gf todvi and mft. At the
time of writing [l July 19901, the current version of
WEB2C is 5.0d, and it has achieved a very satisfactory
success rate on the ever widening range of UNIX sys-
tems available. Tor Lillqvist (tmlOtik. v t t . f i) has
offered an alternative translation system based on
PtC, which is more absolutely tied to POSIX (good)
and ANSI C (not nearly so good) standards. We
have not had the time to evaluate it properly yet,
but we are very interested in moving towards POSIX-
conformance throughout the distribution. and we
shall be giving this our close attention.

For his own Pascal-based change files, Don
Knuth introduced "omphaloscopy" into W, a pro-
cess by which any instance of in i tex or v i r t ex
looks at its own navel ($0) to find out what name
it has been called by, and to select an appropri-
ate format file for that name if one exists. This
practice has been imported into the WEB2C change
files for both rn and METAFONT, and effectively
supercedes the use of undump, which is no longer
supported. There are too many versions of undump
needed across the broad spectrum of UNIX systems,
undumped versions of BIG rn take too much room
both in disk storage and in RAM and swap parti-
tions, and "omphaloscopy" makes private formats
for specific projects much easier.

We have yielded to many requests and consol-
idated all standard tfm files into a single directory
called . /TeX3.0/TeXf onts. Font raster files are still
distributed by "families" for what seem to us to be
fairly compelling reasons. Some minor alterations
were noticed in the cm* .mf sources at Stanford. so

TUGboat, Volume 11 (1990), No. 3

all the fonts have been recompiled for 300, 300w,
240 and 120 dpi devices. Note that the peculiar and
regrettable 118 dpi resolution is no more. Even on
the old BitGraph, for which 118 dpi was originally
adopted, it would be possible to adjust the software
to use 120 dpi fonts. As usual, only the fonts essen-
tial for testing your basic compilation are supplied.
I have worked out a very thorough UNIX manual
page (in troff source) which seems to reduce the ir-
rational fear of METAFONT which we have all too
often encountered. The potential font library is far
too large to form part of a distribution, and users
of rn owe it to themselves to discover the possibil-
ities of METRFONT. The Makefiles associated with
each family of fonts have been redesigned to allow
the use of the simple command

make magsteps DPI=nnn MAGFACTOR=N

so that you don't have to go through the tedium of
calculating DPI-related suffixes for a full set of fonts
at a magstep magnification such as might be needed
for LAW i l p t style.

The collection of old METAFONT79 fonts in
. /amsf onts is about to vanish from the distribu-
tion. In its place will be the METAFONT sources of-
ficially released by the American Mathematical So-
ciety. Sites which may wish to recreate the exact ap-
pearance of documents which used the M-series fonts
(msxrn, msym, mcyr, mcyb), should archive these fonts,
together with the tfm files and the amstex.tex in-
put files associated with them.

Proper response to the flood of interesting con-
tributions to U N I X ~ is way behind schedule, ow-
ing in part to the fact that the passage to lJ$
3.0 had to take priority. We apologize to all who
have been so generous with their offerings, and can
promise that we have not forgotten you.

This year even more than last, I have de-
pended on the initiative and imagination of Eliza-
beth Tachikawa. who now does a great deal of the
technical organization of the distribution as well as
all the administration. During my year's virtual ab-
sence from the university, she has taken on an ever
larger part of the responsibility for the entire oper-
ation, and whatever improvements there may have
been in the general organization and documentation
of U N I X ~ are almost entirely hers.

o Pierre A. Mackay
Northwest Computer Support Group
University of Washington
Mail Stop DW-10
Seattle, Washington 98195
Internet: MacKayQJune. CS. Washington.Edu

VM/CMS Site Report

Joachim Lammarsch

After I got the baton from Dean Guenther (thanks
very much, Dean, for work in the last years), I have
had to learn the job of a site-coordinator. Five
things are very important:

1. Answering questions via e-mail. That is not
very difficult. In most cases the answer may
be:
The VM/CMS distribution tape is available
from:

Maria Code
Data Processing Services
1371 Sydney Drive
Sunnyvale
CA 94087

2. The preparation of the new VM/CMS distri-
bution tape. Peter BreitenlohnerJMiinchen has
done a lot of work on this. He has written the
new change files for !lJ$ 3.0 and one for TFJ
3.0 with 128K memory words.

He has also made the change files for METR-
FONT 2.0, VFTOVP, VPTOVF, the new TANGLE,
WEAVE and the rest of W w a r e and META-
FONTware.

From Dean Guenther I have received the
w T 1 macro package and the IPA Fonts,
which were developed at Washington State Uni-
versity. Dean has also sent me a driver for
the Apple Laserwriter which was ported from
Nelson Beebe's driver family to VM/CMS by
Shashi Sathaye.

From Ferdinand Hommes I got a collection of
drivers for IBM laser printers (e.g., the IBM
3820) and IBM graphic display stations (e.g.,
the IBM 3179, 3192, . . .). These drivers are
only available as t e x t files and you need an
IBM PASCAL VS compiler and GDDM to in-
stall them.

3. The next point is not very pretty: under an-
other typesetting system, someone wrote a text
file containing a virus. I ran a test to see
if it works under VM/CMS with rn 2.991
in the same way. It did! The method is to
use the command \write15 to send VM/CMS
commands to the operating system. To avoid
this, the new TEX 3.0 is changed so that there
is a new variable which controls the use of
\wr i te is . The variable has to be used to allow
\write15 in the first 5 lines of an input source
and before the first input statement.

TUGboat, Volume 11 (1990), No. 3 455

4. Distribution via e-mail. I will put the VM/CMS
change files at the different servers. The change
files will be available using FTP from labrea
(36.8.0.47) and from LISTSERVQWSWMI (Wash-
ington State University). In Europe you can or-
der the files from LISTSERVQDHDURZl (Uni. Hei-
delberg). The new DANTE FTP server at the
University of StuttgartIGermany (129.69.1.12)
will also contain a copy of the complete distri-
bution tape.

5 . Last but not least I will open the distribution
list TEX-IBM hosted at LISTSERVQDHDURZI for
all m users at IBM mainframes. I hope this
will help make information better and above all
faster to access.

o Joachim Lammarsch
Research Center
Universitat Heidelberg
Im Neuenheimer Feld 293
D-6900 Heidelberg
Federal Republic of Germany
Bitnet: X92@DHDURZ1

Report from the Question and Answer
Session

Barbara Beeton

There was a new twist to the question and answer
session at the m a s A&M TUG meeting. Tom
Reid, a m n i c i a n at A&M, set up a mail drop for
advance questions, and arranged for receipts to be
distributed to a small group of volunteer screeners.
The address was publicized in the "usual" places -
'&Xhax, U K m , '&X-Euro, and a few others.
Questions didn't exactly come streaming in, but
enough arrived to give us a good start.

The cpestions- received a t the mail drop were
augmented by a few more gleaned from '&Xhax,
U K W and GUT. Answers were drafted by Michael
Doob (one of the volunteers), Ron Whitney, and
myself, and the questions and concise versions of
the answers turned into slides. This summary is
an edited composite of pre-meeting answers and
discussion from the session itself.

I think this format was moderately successful,
and hope that a similar arrangement can be made
for next year; a repeat should be even more
successful, as people will be more familiar with
the procedure, and will realize when seeing this
summary that questions posed to that forum haven't
simply dropped into a black hole.

Thanks particularly to Tom and Michael, and
to the folks who sent in the questions.

Herewith the questions, their sources, and
answers.

Q 1. Christina Thiele

In making up a sort of letterhead, the idea is to
have some text to the left, to the right, and in the
middle, all of different font styles and sizes. Here is
what I tried.
\line(left\hfil middle\hfil right)
\line(more\hfil and more\hfil even more)

Even where I fudged, things don't centre properly.
left middle right
more and more even more

How can this be fixed?

Answer. You have to remember that the stuff in
the middle should be centered with respect to the
outside boundaries, not just given equal space on
either side to separate it from whatever is on the
left and right.
left middle right
more and more even more

This can't be done using just one box (\line),
but there are two easy ways to get the effect you
want with several nested boxes.

The first approach uses two full-width text
boxes, superimposed on one another with an \rlap.

\lineC\rlap(\lineI\hf il middle\hf ill)%
left \hfil right)

\line{\rlap(\line(\hfil and more\hfil))%
more \hfil even more)

You get the same result using one full-width box
and two lapped boxes at the ends.
\line(\rlap(lef t)\hf il middle\hf il

\llap(right))
\line(\rlapCmore3\hfil and more\hfil

\llapCeven more))

Note that the "main" full-width box is always out-
side the others. It is possible to have the boxes side-
by-side rather than nested, but to do so, one must
remember that in vertical mode, an \hbox will not
switch into horizontal mode, so adjacent \hboxes

456 TUGboat, Volume 11 (1990), No. 3

would be set one above another rather than in the Q 4. Aidan Delaney (from m h a x)
same line, unless an explicit mode-changing com-
mand (\noindent, \ leavemode) were also used.
It's easier to avoid those complications by nesting.

Q 2. Reinhard Wonneberger

Who is going to rewrite MakeIndex in WEB?

Answer. MakeIndex was created in C, and has not
been rewritten in any other language. To implement
it in WEB would indeed make it more widely usable
than it is now. We have not found a volunteer yet,
but are looking for one.

Q 3. Jim Diamond

What is the purpose of the \kern-\dimen@ in
the \ifr@ggedbottom section of \pagecontents on
page 364 of the The W b o o k ?

Answer. Let us start with the cited definition of
\pagecontents:
\def\pagecontents(%

\ifvoid\topins\else\unvbox\topins\fi
\dimen@=\dp255 \unvbox255
\ i fvo id\ foot ins
\e lse % footnote in fo present

\vskip\skip\f oot ins \f ootnot e ru le
\unvbox\footins

\f i
\ifr@ggedbottom \kern-\dimen@ \ v f i l
\f i 3

\dimen@ is set to the depth of \box255 before it
is unvboxed. This will be positive (if the last box
within it - presumably the last line of text - has
positive depth) or zero.

First, note that \pagecontents is called only
in \pagebody:

If \r@ggedbottom is false, the last baseline will be
vertically justified by adding (vertical) glue within
the page so that the last baseline is at the bottom
of the page, that is, at \vsize. (If the page is
sufficiently full, this additional glue may be less
than the depth of the last line, \dimen@.) But if
\r@ggedbottom is true, glue is added following the
page box and the footnote to fill the space between
the last baseline and the bottom of the page. The
depth of the last line, \dimen@' is now included
in the height of the material being set to \vsize.
Without the negative kern the page could actually
be bigger than \vsize if \dimen@ is positive.

How can a I4W \caption be modified so that,
instead of

Figure 3.1: Structural trends in the Celtic Sea area
(after Gardiner & Sheridan, 1981)

it will produce
Figure 3.1: Structural trends in the Celtic Sea area

(after Gardiner & Sheridan, 1981)

Answer. \@makecaption (in the document style
files) is the macro that does the work. Here is the
modified definition from repor t . sty .
\long\def\@makecaption#1#2(

\vskip IOpt
\setbox\@tempboxa\hbox~#l: #23
\ i f dim \wd\@tempboxa >\hsize

\setbox\@tempboxa\hbox~#l: 3% new
\leavemode % new
\hangindent\wd\@tempboxa % new
\copy\@tempboxa #2\par % change

\e lse \hbox to\hs ize
{\hfil\box\@tempboxa\hfil)

\f i 3
Of course. this works only on the first paragraph,
but it's usually considered bad form to have really
long, multi-paragraph captions.

Q 5. Larry Denenberg

We wish to provide a \ ru led inser t macro similar
in function to \ top inser t with the difference that
the insertions are set off from one another by rules.
In addition, the final such insertion is to be followed
by a fairly hefty skip (say 24pt). Here is a "sample
page" showing the desired output.

(headline)
horizontal rule
(first insert)
horizontal rule
(second insert)
horizontal rule
\vskip 24pt
(rest of age)

This arrangement is complicated by the fact that
normal \ top inser ts may also occur in the docu-
ment; when this occurs, all normal \ top inser ts
come first, followed by a rule, then by the \ruledin-
ser ts . The document may also contain footnotes.

Answer. \ top inser ts are already a distinct class
in plain m, tested in the output routine (The
W b o o k , p. 364), as are footnotes. A new class
should be established for \ ru led inser t . Multiple

TUGboat, Volume 11 (1990), No. 3

The right column will be split when played equation that appears within
the equation it. These rules are affected if the

an = bn +cn + d n + e n + f n + . . a + zn

appears in the left column. Splitting split appears on the top or bottom of
must occur with horizontal rules to a page. The columns must be bal-
separate a split column from the dis- anced and may include single column

material that spans the entire page.

Figure 1. Q 6: Two-column IEEE format

insertion classes, when properly defined, will not
conflict with one another. Rules are not doubled
between adjacent \ ru led inser ts ; instead a struc-
tural analysis can consider the rule above each to
be part of the insert, and the final rule to be a
function of the output routine. Then definitions
can be modeled on the plain code for \ top inser t :

\newinsert\ruledins
\skip\ruledins=24pt
\def\ruledinsert(\@ins

(horizontal rule) (vertical skip))
\def\endruledinsertC\egroup

\ insert\ruledins(\boxO
\nobreak (vertical skip))\endgroup)

Note that a \ ru led inser t has its own terminator,
here called \endruledinsert . The \endinsert
provided by plain already covers so many cases that
it isn't a good idea to add anything more.

The insertion is placed on the page in an
extension of plain's \pagecontents:

Additional parameters should also be provided, as
they are for \ top inser t ; see The m b o o k : p. 363.

Q 6. Steven Smith

I am looking for a sophisticated W or I4W
double-column macro capable of the following:

i. Double/single column capability on the same
page. (I P W starts a new page every time
its format is switched from \doublecolumn to
\singlecolumn.)

ii. The ability to split the column opposite a large
displayed equation, as illustrated in Figure 1.

This format mimics that of many IEEE journals.
Is there an IEEE. s t y I P W style file anywhere?

Have any TjjX hackers attacked this problem?

Answer. A n o n - I P m solution to this problem was
described in some detail in a paper presented at last
year's annual meeting. See the proceedings: Inserts
in a multiple-column format, by Gary Benson, Debi
Erpenbeck, and Janet Holmes, TUGboat 10, no. 4,
pp. 727-742.

We haven't found any I P W style file.

Q 7. Guy Metcalfe

It is fairly common in experimental science to
prepare large tables of data. When the width of
a table is greater than 1 page then the typesetter
usually rotates the table 90 degrees so that it fits
along the page to be read from top to bottom [sic]
rather than left to right. I find this impossible to
do in ~ / I X C E X , especially if the table needs then
to be split over more than 1 page.

How can I handle tables both wide and long?

Answer. An unextended implementation of W
can handle only horizontal setting from left-to-
right. However, some output device drivers do
have the ability to "paste in" segments of material
prepared separately and accessed via the \specia l
command. Although this usually means "graphics" :

a .dvi file should also be a suitable candidate, as
long as the rotation is a multiple of 90".

The characteristics of your device driver should
be checked to see if it can handle rotated inserts.
This suggestion will be conveyed to the device
driver standards committee for possible inclusion in
a future extension of the standards beyond level 0.

If one wishes to keep such a table in the same
file as the rest of the paper, it would be possible to
write macros that would write out the table code to

TUGboat, Volume 11 (1990), No. 3

another file and leave blank pages or advance the
page counter in the appropriate place.

Q 8. Mark Moline

Is it possible to access the width of a given field
within an \hal ip construction. For example, can
one determine the width of column 3 and use that
dimension within the \halip?

Answer. W ' s alignment structures don't provide a
direct way of determining the width of a particular
column or cell. An ad hoc technique for obtaining a
useful value is to determine the widest entry in the
column, save it in a named box before beginning
the alignment, and use the width of that box.

Q 9. Chris Hand (from GUT list)

While preparing a recent compte-rendu GUT with
LPW, the line

\subsection~Journ\'Oe
\<<C)europ\'(e)enne\>>
\ du lundi 14 mai)

caused to write a line of 509 characters into
the . aux file. The macros for the guillemets
were responsible for much of the length. (When
these macros were replaced by others that used the

Participants
at the

11th Annual TUG Meeting
June 17-20,1990

College Station, Texas

Exhibitors are indicated by *

Cynthia S. Actis
Boeing Computer Services
Seattle, Washington

Robert A. Adams
University of British Columbia
Vancouver, British Columbia, Canada

Clifford Alper
Users Group

Providence. Rhode Island

guillemets in the font mcyrl0, the problem went
away.)

7&X reported

C.. .I
C31 C41 C51 C61 (#tz020859.aux
Unable to read an entire line---bufsize=500

and then terminated.
Why does rn write lines so long that it can't

read them?
Is the only solution to recompile rn with an

enlarged buf size?

Answer. The preferred technique of avoiding long
lines in an . aux file is to expand only those control
sequences whose expansions will change before the
. a m file is read in; this includes, of course, section
headings, page numbers, and the like. However,
control sequences within section heading text should
usually not be expanded.

The next generation of is expected to
suppress this level of expansion automatically. For
the present, if you are using I P W , \fragile can be
inserted before any control sequence that shouldn't
be expanded in a string being written out to an
. aux file.

\noexpand and \string function in relatively
comparable ways in non-IPW environments.

Bernadette Archuleta
Los Alamos National Laboratory
Los Alamos, New Mexico

William W. Babcock
Northern Michigan University
Marquette, Michigan

*Michael Ballantyne
m p l o r a t o r s Corporation
Houston, Texas

Elizabeth M. Barnhart
TV Guide
Radnor, Pennsylvania

Stephan v. Bechtolsheim
Integrated Computer Software, Inc.
West Lafayette, Indiana

Micah Beck
Cornell University
Ithaca, New York

Nelson H. F. Beebe
University of Utah
Salt Lake City, Utah

Nancy Blachman
Wolfram Research
Champaign, Illinois

Jennifer L. Bohac
Texas A&M University
College Station, Texas

Jerry T. Borges
Lawrence Berkeley Laboratory
Berkeley, California

David M. Bowen
Cray Research Incorporated
Carrollton, Texas

Len Boyle
SUNY at Stony Brook
Stony Brook, New York

Judi Briesmeister
Los Alamos National Laboratory
Los Alamos, New Mexico

*Terry Bryll
Northlake Software
Portland, Oregon

Abass Andulem
Houston, Texas

Barbara Beeton
American Mathematical Society
Providence, Rhode Island

Mimi Burbank
Florida State University
Tallahassee, Florida

TUGboat, Volume 11 (1990), 7

Neil A. Burleson
Texas A&M University
College Station, Texas

Karen Butler
TEX Users Group
Providence, Rhode Island

William Butler
Users Group

Providence, Rhode Island

Helen M. Byers
Los Alamos National Laboratory
Los Alamos, New Mexico

Pierce Cantrell
Texas A&M University
College Station, Texas

*Lance Carnes
Personal TEX Incorporated
Mill Valley, California

Christopher Carruthers
University of Ottawa
Ottawa, Ontario, Canada

Evelyn E. Chaney
Sandia National Laboratories
Livermore, California

Ken Chang
Texas A&M University
College Station, Texas

Sheryl D. Chapman
Cogni Seis Development
Houston, Texas

S. Bart Childs
Texas A&M University
College Station, Texas

Malcolm W. Clark
Imperial Cancer Research Fund

Laboratories
London, England

David M. Cobb
S AIC
Oak Ridge, Tennessee

Kay Coen
Los Alamos National Laboratory
Los Alamos, New Mexico

Arvin C. Conrad
Menil Foundation
Houston, Texas

John M. Crawford
Ohio State University
Columbus, Ohio

*Betsy J. Dale
ArborText Incorporated
Ann Arbor, Michigan

Jackie A. Damrau
Superconducting Super Collider

Laboratory
Dallas, Texas

Walter Daugherity
Texas A&M University
College Station, Texas

*Beth Dehlinger
Northlake Software
Portland, Oregon

Luzia Dietsche
Universitat Heidelberg
Heidelberg
Federal Republic of Germany

Michael Doob
University of Manitoba
Winnipeg, Manitoba, Canada

Ken Dreyhaupt
Springer-Verlag
New York, New York

Lincoln K. Durst
TEX Users Group
Providence, Rhode Island

Allen R. Dyer
Computer Law Laboratory
Ellicott City, Maryland

David J . Fenwick
Quasar Knowledge Systems
Washington, D.C.

Michael J. Ferguson
Universite du Quebec
Verdun, QuBbec, Canada

Peter Flynn
University College of Cork
Cork, Republic of Ireland

Jim Fox
University of Washington
Seattle, Washington

Harumi Fujiura
ASCII Corporation
Kawasaki, Japan

Stephen A. Fulling
Texas A&M University
College Station, Texas

Richard Furuta
University of Maryland
College Park, Maryland

Edward A. Garay
University of Illinois at Chicago
Chicago, Illinois

Mary Louise Garcia
Los Alamos National Laboratory
Los Alamos, New Mexico

Diane M. Gehan
I.M.S.L. Incorporated
Houston, Texas

Helen M. Gibson
Wellcome Institute for the History

of Medicine
London, England

Regina Girouard
American Mathematical Society
Providence, Rhode Island

Raymond Goucher
Users Group

Providence, Rhode Island

John M. Gourlay
ArborText Incorporated
Ann Arbor, Michigan

Sharon L. Gray
Los Alamos National Laboratory
Los Alamos, New Mexico

Andrew Marc Greene
Massachusetts Institute of Technology
Cambridge, Massachusetts

Gayla Groom
Blue Sky Research
Portland, Oregon

Dean R. Guenther
Washington State University
Pullman, Washington

Hisato Hamano
ASCII Corporation
Minato-ku Tokyo, Japan

Hope Hamilton
National Center for Atmospheric

Research
Boulder, Colorado

Chris Hamlin
American Institute of Physics
Woodbury, New York

Nancy K. Hannigan
MIT Lincoln Laboratory
Lexington, Massachusetts

Marvin V. Harlow
Los Alamos National Laboratory
Los Alamos, New Mexico

Niki Harris
Texas A&M University
College Station, Texas

Robert L. Harris
Micro Programs Incorporated
Syosset, New York

Doug Henderson
Blue Sky Research
Portland, Oregon

Amy Hendrickson
=nology Incorporated
Brookline, Massachusetts

Mildred H. Hoak
Los Alamos National Laboratory
Los Alamos, New Mexico

John D. Hobby
AT&T Bell Laboratories
Murray Hill, New Jersey

TUGboat, Volume 11 (1990), No. 3

Alan Hoenig
John Jay College (CUNY)
New York, New York

Anita Z. Hoover
University of Delaware
Newark, Delaware

Don Hosek
Harvey Mudd College
Claremont, California

Portia Hsiung
American Institute of Physics
Woodbury, New York

Calvin W. Jackson
California Institute of Technology
Pasadena, California

*Claire Kahan
Personal w Incorporated
Mill Valley, California

William S. Kaster
Hewlett-Packard Company
Palo Alto, California

*David Kellerman
Northlake Software
Portland, Oregon

John T. Kesich
New York University
New York, New York

*Richard J . Kinch
Kinch Computer Company
Ithaca, New York

Peter F. Klammer
University of Colorado
Denver, Colorado

Howard Kong
Mitre Corporation
Bedford, Massachusetts

David H. Kratzer
Los Alamos National Laboratory
Los Alamos, New Mexico

Ryoichi Kurasawa
ASCII Corporation
Kawasaki, Japan

Mimi Lafrenz
ETP Services Co.
Portland, Oregon

Joachim Lammarsch
Universitat Heidelberg
Heidelberg
Federal Republic of Germany

Charlotte V. Laurendeau
w Users Group
Providence, Rhode Island

Luby Liao
University of San Diego
San Diego, California

Nelson A. Logan
Austin, Texas

Pierre MacKay
University of Washington
Seattle, Washington

Kenneth Marshall
Rice University
Houston, Texas

Charles R. Martin
Duke University
Durham, North Carolina

John McClain
Texas A&M University
College Station, Texas

Robert W. MCGaffey
Martin Marietta Energy

Systems Incorporated
Oak Ridge, Tennessee

Wendy McKay
University of Montreal
Montreal, Quebec, Canada

Lothar Meyer-Lerbs
Universitat Bremen
Bremen, Federal Republic of Germany

Terry W. Miller
Sundstrand Avionics Support Services
Redmond, Washington

Lia M. Mitchell
Los Alamos National Laboratory
Los Alamos, New Mexico

Frank Mittelbach
Universitat Mainz
Mainz, Federal Republic of Germany

Yoshiyuki Miyabe
Matsushita Electric Ind Company Ltd
Osaka, Japan

Mark Moline
Publication Services
Champaign, Illinois

Patricia Monohon
University of Washington
Seattle, Washington

Mary Jean Moore
University of California
Oakland, California

Mark Mot1
Texas A&M University
College Station, Texas

Norman Naugle
Texas A&M University
College Station, Texas

David Ness
University of Pennsylvania
Philadelphia, Pennsylvania

Robert A. Nilsson
Texas A&M University
College Station, Texas

Toshiharu Ohno
ASCII Corporation
Minato-ku Tokyo, Japan

Jose Luis Olivares
Sociedad Mexicana de Fisica
Coyoacan, Mexico

Daniel D. Olson
ETP Services Co.
Portland, Oregon

Peter W. Owings
University of Rochester
Rochester, New York

Yeongbok Park
RIST
Pohang, Korea

Noel C. Peterson
Library of Congress
Washington, D.C.

Laurie Petrycki
Addison-Wesley Publishing Company
Reading, Massachusetts

Mark M. Pickrell
Wynne-Manley Software, Inc.
Los Alamos, New Mexico

Craig R. Platt
University of Manitoba
Winnipeg, Manitoba, Canada

Julie A. Pomroy
American Mathematical Society
Providence, Rhode Island

*Mike Pond
Wolfram Research
Champaign, Illinois

Ekman T.W. Poon
United Bible Societies
Kowloon, Hong Kong

Robert B. Pratt
Zycor Incorporated
Austin, Texas

Jon Radel
Reston, Virginia

Thomas Reid
Texas A&M University
College Station, Texas

Norman Richert
University of Houston
Houston, Texas

Stewart Robinson
Texas A&M University
College Station, Texas

TUGboat, Volume 11 (1990), No. 3

Cynthia Rodriguez
University of Illinois a t Chicago
Chicago, Illinois

Robert J . Sparks
Texas A&M University
College Station, Texas

*Michael Vulis
Micro Press, Inc.
Forest Hills, New York

Tomas G. Rokicki
Radical Eye Software
Stanford, California

'Michael D. Spivak
m p l o r a t o r s Corporation
Houston, Texas

Leslie C. Watson
SFA, Inc.
Ft. Washington, Maryland

Jan Michael Rynning
Royal Institute of Technology
Stockholm, Sweden

David K. Steiner
Rutgers University
Piscataway, New Jersey

Alan Wetmore
White Sands Missile Range
New Mexico

David Salomon
California State University,

Northridge
Northridge, California

Alan Stolleis
Texas A&M University
College Station, Texas

Ron Whitney
T@ Users Group
Providence, Rhode Island

Carol Sullivan Pat Wilcox
United States Geological Survey Cool Spring Banjo Works
Menlo Park, California Delaware, Ohio

Arturo Shchez y GBndara
Sociedad Mexicana de Fisica
Coyoacan, Mexico

Aaron Sawdey
Publication Services
Champaign, Illinois

*Leb Tannenbaum
Blue Sky Research
Portland, Oregon

Linda Williams
University of Tennessee Space

Institute
Tullahoma, Tennessee

Glenn Scholebo
Wolfram Research
Champaign, Illinois

*Lin Tay
Micro Press, Inc.
Forest Hills, New York

Cheryl W. Winstead
NASA Langley Research Center
Hampton, Virginia Sean C. Simmons

Quasar Knowledge Systems
Washington, D.C.

Christina Thiele
Carleton University
Ottawa, Ontario, Canada

Janene Winter
American Mathematical Society
Providence, Rhode Island *Barry Smith

Blue Sky Research
Portland, Oregon

David Thompson
Lawrence Livermore National

Laboratory
Livermore, California

Cheryl Woods
?$X Users Group
Providence, Rhode Island Lowell Smith

Hercules Aerospace
Salt Lake City, Utah *D. R. Tsai Jerry Woods

Micro Press, Inc. San Diego, California
Forest Hills, New York

William B. Woolf
Lisa Ungar American Mathematical Society
IBM T . J . Watson Research Center Providence, Rhode Island

Michael Sofka
Publication Services
Champaign, Illinois

Friedhelm Sowa
Heinrich Heine University
Diisseldorf
Federal Republic of Germany

Yorktown Heights, New York
Ralph E. Youngen

Russel B. Vanderhoof American Mathematical Society
Cape Canaveral, Florida Providence, Rhode Island

Susan J. Spach
Los Alamos National Laboratory
Los Alamos, New Mexico

Barbara J. Velarde-Maes Salih Yurttas
Los Alamos National Laboratory Texas A&M University
Los Alamos, New Mexico College Station, Texas

There were 167 participants at the Meeting.

462 TUGboat, Volume 11 (1990), No. 3

Calendar

1990

m 9 0 Conference
University College
Cork, Ireland
Sep 3 - 7 Intensive BeginningIIntermed. 7&X

Sep 3-5 Intensive I 4 m

Sep 3 - 7 Intensive METAFONT

Sep 5-7 S G M L / W
Sep 7 - 8 Advanced TEX

Sep 10 - 13 TUG'S lSt Conference in Europe
Sep 14- 15 Macro Writing

Sep 14- 15 I4W Style Files
Sep 14- 15 Graphics in TEX

Sep 11 TUGboat Volume 11,
31d regular issue:
Deadline for receipt of manuscripts
(tentative).

Sep 18-20 EP'90
National Institute of Standards
and Technology, Gaithersburg,
Maryland. For information,
contact Richard Furuta
(furutaQbri l l ig.umd. edu).

Oct 3- 5 Seybold Computer Publishing
Conference, San Jose Convention
Center, San Jose, California.
For information, contact Seybold
Publications, West Coast Office
(213-457-5850).

Oct 10 - 12 gth annual meeting, "Deutsch-
sprachige W-Interessenten" ;

Dec 6 - 8 European Publishing Conference,
Netherlands Congress Centre,
The Hague, Holland.
For information, contact Seybold
Publications, U. K. Office
((44) 323 410561).

Jan 15 TUGboat Volume 12,
lSt regular issue:
Deadline for receipt of manuscripts
(tentative).

Feb 20 - 22 loth annual meeting, "Deutsch-
sprachige W-Interessenten" ;
DANTE e.V.: 4th meeting,
Technical University of Vienna.
For information, contact
Dr. Hubert Part1 (Bitnet:
Z3000PAQAWITUWOl) or DANTE e.V.
(Bit net: DANTEQDHDURZI)

Apr 9 TUGboat Volume 12,
2nd regular issue:
Deadline for receipt of manuscripts
(tentative).

May 28 - 30 Congres GUTenberg'91
Paris, France. For information,
contact Olivier Nicole (Bitnet:
Nicole@FRINRA72.Bit.net, or
+33 1 34 65 22 32)

Sep 10 TUGboat Volume 12,
31d regular issue:
Deadline for receipt of manuscripts
(tentative).

DANTE e.V.: 3 1 ~ meeting, GWD, For additional information on the events listed
GWtingen. For information, contact above, contact the TUG office (401-751-7760) unless
Dr. Peter Scherber (Bitnet: otherwise noted.
PSCHERBQDGOGWDGI) or DANTE e.V.
(Bitnet: DANTEODH~URZI)

Status a s of 9 August 1990

TUGboat , Volume 11 (1990), No. 3

Institutional
Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

ASCII Corporation,
Tokyo, Japan

Aston University,
Birmingham, England

Belgrade University,
Faculty of Mathematics,
Belgrade, Yugoslavia

Brookhaven National Laboratory,
Upton, New York

Brown University,
Providence, Rhode Island

California Institute of Technology,
Pasadena, California

Calvin College,
Grand Rapids, Michigan

Carleton University,
Ottawa, Ontario, Canada

Carnegie Mellon University,
Pittsburgh, Pennsylvania

Centre Inter-R&gional de
Calcul ~ l e c t r o n i ~ u e , CNRS,
Orsay, France

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

DECUS, L&T Special Interest
Group, Marlboro, Massachusetts

Department of National Defence,
Ottawa, Ontario, Canada

Digital Equipment Corporation,
Nashua, New Hampshire

Edinboro University
of Pennsylvania,
Edinboro, Pennsylvania

Emerson Electric Company,
St. Louis, Missouri

Environmental Research
Institute of Michigan,
Ann Arbor, Michigan

European Southern Observatory,
Garching bei Munchen,
Federal Republic of Germany

Fermi National Accelerator
Laboratory, Batavia, Illinois

Fordham University,
Bronx, New York

General Motors
Research Laboratories,
Warren, Michigan

Geophysical Company
of Norway A/S,
Stavanger, Norway

GKSS, Forschungszentrum
Geesthacht GmbH,
Geesthacht, Federal Republic of
Germany

Grinnell College,
Computer Services,
Grinnell, Iowa

Harvard University,
Computer Services,
Cambridge, Massachusetts

Hatfield Polytechnic,
Computer Centre,
Herts, England

Hewlett-Packard Co.,
Boise, Idaho

Hughes Aircraft Company,
Space Communications Division,
Los Angeles, California

IBM Corporation,
Scientific Center,
Palo Alto, California

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Intevep S. A., Caracas, Venezuela

Iowa State University,
Ames, Iowa

The Library of Congress,
Washington D. C.

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Louisiana State University,
Baton Rouge, Louisiana

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Massachusetts Institute
of Technology,
Artificial Intelligence Laboratory,
Cambridge, Massachusetts

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Federal Republic of Germany

Max Planck Institute Stuttgart,
Stuttgart, Federal Republic of
Germany

McGill University,
Montre'al, Que'bec, Canada

Michigan State University,
Mathematics Department,
East Lansing, Michigan

National Cancer Institute,
Frederick, Maryland

National Research Council
Canada, Computation Centre,
Ottawa, Ontario, Canada

Naval Postgraduate School,
Monterey, Californza

New Jersey Institute of
Technology, Newark, New Jersey

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Software Laboratories,
Tokyo, Japan

Northeastern University,
Academic Computing Services,
Boston, Massachusetts

Norwegian Pulp & Paper
Research Institute,
Oslo, Norway

464 TUGboat , Volume 11 (1990), NO. 3

Pennsylvania State University,
Computation Center,
University Park, Pennsylvania

Personal m, Incorporated,
Mill Valley, California

Princeton University,
Princeton, New Jersey

Promis Systems Corporation,
Toronto, Ontario, Canada

Peter Isaacson Publications,
Victoria, Australia

Purdue University,
West Lafayette, Indiana

Queens College,
Flushing, New York

RE/SPEC, Inc.,
Rapid City, South Dakota

Rice University,
Department of Computer Science,
Houston, Texas

Rogaland University,
Stavanger, Norway

Ruhr Universitat Bochum,
Rechenzentrum,
Bochum, Federal Republic of
Germany

Rutgers University, Hill Center,
Piscataway, New Jersey

St. Albans School,
Mount St. Alban, Washington,
D. C.

Sandia National Laboratories,
Albuquerque, New Mexico

SAS Institute,
Cary, North Carolina

I. P. Sharp Associates,
Palo Alto, Calzfornia

Smithsonian Astrophysical
Observatory, Computation Facility,
Cambridge, Massachusetts

Software Research Associates,
Tokyo, Japan

Sony Corporation,
Atsugi, Japan

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Federal Republic of
Germany

Stanford Linear
Accelerator Center (SLAC) ,
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stefan Ram, Programming and
Trade, Berlin, Federal Republic of
Germany

Syracuse University,
Syracuse, New York

Talaris Systems, Inc.,
San Diego, California

TECOGRAF Software,
Milan, Italy

Texas A & M University,
Department of Computer Science,
College Station, Texas

Texcel, Oslo, Norway

TRW, Inc., Redondo Beach,
California

Tufts University,
Medford, Massachusetts

TV Guide, Radnor, Pennsylvania

TYX Corporation,
Reston, Virginia

UNI-C, Aarhus, Denmark

Universidad Sevilla,
Sevilla, Spain

Universidade de Coimbra,
Coimbra, Portugal

Universiti degli Studi Milano,
Istituto di Cibernetica,
Milan, Italy

University College,
Cork, Ireland

University of Alabama,
Tuscaloosa, Alabama

University of British Columbia,
Computing Centre,
Vancouver, British Columbia,
Canada

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,
Canada

University of Calgary,
Calgary, Alberta, Canada

University of California,
Division of Library Automation,
Oakland, California

University of California, Berkeley,
Computer Science Division,
Berkeley, California

University of California, Berkeley,
Space Astrophysics Group,
Berkeley, California

University of California, Irvine,
Department of Mathematics,
Irvine, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of California,
Los Angeles, Computer
Science Department Archives,
Los Angeles, Calafornia

University of California,
San Diego, La Jolla, California

University of Canterbury,
Christchurch, New Zealand

University of Chicago,
Computing Organizations,
Chicago, Illznois

University of Chicago,
Chicago, Illinois

University of Crete,
Institute of Computer Science,
Heraklio, Crete, Greece

University of Delaware,
Newark, Delaware

University of Exeter,
Computer Unit,
Exeter, Devon, England

University of Glasgow,
Department of Computing Science,
Glasgow, Scotland

University of Groningen,
Gronzngen, The Netherlands

University of Illinois at Chicago,
Computer Center,
Chicago, Illinois

University of Kansas,
Academic Computing Services,
Lawrence, Kansas

University of Maryland,
Department of Computer Science,
College Park, Maryland

TUGboat , Volume 11 (1990), No. 3

University of Maryland
at College Park,
Computer Science Center,
College Park, Maryland

University of Massachusetts,
Amherst, Massachusetts

UniversitC de Montrkal,
Montre'al, Que'bec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Oslo,
Institute of Mathematics,
Blindern, Oslo, Norway

University of Ottawa,
Ottawa, Ontario, Canada

University of Salford,
Salford, England

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Texas

University of Vermont,
Burlington, Vermont

University of Washington,
Department of Computer Science,
Seattle, Washington

University of Western Australia,
Regional Computing Centre,
Nedlands, Australia

University of Wisconsin,
Academic Computing Center,
Madison, Wisconsin

Uppsala University,
Uppsala, Sweden

USDA Forest Service,
Washington, D. C.

Vereinigte Aluminium-Werke AG,
Bonn, Federal Republic of Germany

Villanova University,
Villanova, Pennsylvania

Vrije Universiteit,
Amsterdam, The Netherlands

Washington State University,
Pullman, Washington

Widener University,
Computing Services,
Chester, Pennsylvania

John Wiley & Sons, Incorporated,
New York, New York

Worcester Polytechnic Institute,
Worcester, Massachusetts

Yale University, Computer Center,
New Haven, Connecticut

Yale University,
Department of Computer Science,
New Haven, Connecticut

Anew and unique service fromthe Printing Division of the Oldest Press in the World

The CAMBRIDGE service that lets you and your publisher decide how your
mathematical or scientific text will appear.

Monotype output in Times and Helvetica as well as a complete range of
Computer Modern faces from your TEX keystrokes

For details contact

T E C H N I C A L A P P L I C A T I O N S G R O U P C A M B R I D G E U N I V E R S I T Y P R E S S
U N I V E R S I T Y P R I N T I N G H O U S E S H A F T E S B U R Y R O A D C A M B R I D G E C B 2 2 B S E N G L A N D

T E L E P H O N E (0 2 2 3) 3 2 5 0 7 0

'I)ijX Users Group 1990 Membership Form

Request for Information

The 'QX Users Group maintains a database and
publishes a membership list containing informa-
tion about the equipment on which 'QX is (or will
be) installed and about the applications for which
QX is used. This list is updated periodically and
distributed to members with TUGboat, to permit
them to identify others with similar interests. Thus,
it is important that the information be complete
and up-to-date.

Please answer the questions below, in particu-
lar those regarding the status of TEX and the hard-
ware on which it runs. (Operating system informa-
tion is particularly important in the case of IBM
mainframes and VAX.) This hardware information
is used to group members in the listings by com-
puter and output device.

If accurate information has already been pro-
vided by another TUG member at your site, indi-
cate that member's name and the same information
will be repeated automatically under your name. If
your current listing is correct, you need not answer
these questions again. Your cooperation is appre-
ciated.

Send completed form with remittance
(checks, money orders, UNESCO coupons) to:

'I$$ Users Group
P. 0 . Box 594
Providence, Rhode Island 02901, U.S.A.

For foreign bank transfers
direct payment to the Users Group,
account #002-031375, at:

Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S.A.

General correspondence
about TUG should be addressed to:

'I$$ Users Group
P. 0. Box 9506
Providence, Rhode Island 02940-9506, U.S.A.

Name:
Home []
BUS. [1 Address:

Membership List Information

Institution (if not part of address): Date:

Amount Qty

Title:

Issues of TUGboat will be shipped via air service outside
North America. TOTAL ENCLOSED:
Quantity discounts available on request. (Prepayment in U.S. dollars required)

1990 Membership/TUGboat Subscription (Jan.-Dec.)
New (first-time): [] $35.00 each; students [] $25.00 each
Renewal: [] $45.00; [] $35.00 - reduced rate if renewed before February 1,1990
Mailing charges p e r subscript ion: CanadaIMexico - $5; Europe - $10; Other Countries - $15
TUGboat backvolumes 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Circle volume(s) desired: v. 1 v. 2 v. 3 v. 4 v. 5 v. 6 v.7 v. 8 v. 9 v. 10

$18 $50 $35 $35 $35 $50 $50 $50 $50 $75

Phone:
Network address:

[] Arpanet [] BITnet
[] CSnet [] uucp
[] JANET [] other

Specific applications or reason for interest in Q X :

My installation can offer the following software or
technical support to TUG:

Please list high-level 'TkX users at your site who would not
mind being contacted for information; give name, address, and
telephone.

Status of 'QX: [] Under consideration
[] Being installed
[] Up and running since: -
Approximate number of users: -

Version of 7$X:
[] Pascal

I C
[] other (describe)
From whom obtained:

Hardware on which is used:
Operating Output

Computer(s) system(s) device(s)

Revised 5/90

Publishing Companion translates

It doesn't take a T s p e r t to use TEX.

With Publishing Companion, you can publish documents using TEX with little or no TEX
knowledge. Your WordPerfect files are translated into TEX files, so anyone using this simple
word processor can immediately begin typesetting their own documents!

And now, Publishing Companion translates WordPerfect 5.0 and 5.1 files into TEX.

Retail Price . $249.00

Academic Discount Price . $199.00

For the power of TEX with the ease of a word processor, Publishing Companion is your
"best friend" for desktop publishing.

For more information to place an order, call or write:
30 West First Ave., Suite 100

Columbus, Ohio 43201
(614) 294-3535

FAX (614) 294-3704

DESKTOP PUBLISHING HAS NEVER BEEN SIMPLER
AND WILL NEVER BE THE SAME

irt ual Fonts

Another first from ArborText

for the TEX Community ...

... built in support for Virtual Fonts

with Preview and DVILASER for TEX 3.0.

See Us in Cork

at the

First TUG Meeting in Europe

535 W. William St., Ann Arbor, MI 48103, (313) 996-3566, FAX (313) 996-3573 ARBORTEXT- INC.

Updated Products
from the American Mathematical Society

AMS-TJ~~X Version 2.0
AMS-W, the TEX macro package that simplifies the typesetting of complex mathematics, has been updated
to version 2.0. AMS-TEX is intended to be used in conjunction with AMSFonts 2.0 (see below). However,
AMS-W can also be used without AMSFonts. AMS-TJ$ is available on IBM or Macintosh diskettes-either
format may be uploaded to many mainframe computers. Prices: $32 list, $29 AMS member.

AMSFonts Version 2.0
AMSFonts 2.0 are designed for use with either AMS-TEX 2.0 or Plain '&J. AMSFonts 2.0 cannot be used with
previous versions of A M S - w . Two distributions of fonts are available: one for use on PCs and mainframes
(with any implementation of m), the other for use on a Macintosh with Textures. The fonts included on
these distributions are:

Font
Name

CMEX
CMCSC
CMMIB
CMBSY
EURB
EURM
EUFB

Description

CM Math Extension
CM Caps and Small Caps
CM Math Italic Boldface
CM Bold Symbols
Euler Cursive Boldface
Euler Cursive Medium
Euler Fraktur Boldface

Point
Sizes

7-9*
8-9'
5-9'
5-9'
5-10
5-10
5-10

Font
Name

EUSM
EUEX
MSAM
MSBM
WNCYR
WNCYI
WNCYB

Point
Description Sizes

Euler Script Medium 5-10
Euler Compatible Extension 7-10
Symbols 5-10
Symbols (w/Blackboard Bold) 5-10
Cyrillic Upright 5-lo**
Cyrillic Italic 5-10"
Cyrillic Boldface 5-lo**

EUFM Euler Fraktur Medium 5-10 WNCYSC Cyrillic Caps and Small Caps lo**
EUSB Euler Script Boldface 5-10 WNCYSS Cyrillic Sans Serif 8-lo**

* 10 point is included in the standard 'Q$ distribution.
** Developed by the University of Washington

AMSFonts for use on a PC or mainframe

0 Font Resolution: 118, 180, 240, 300, 400 dpi (one resolution per order).

0 Magnification: All the standard TEX magnifications are included. The standard magnifications are: 100,
109.5, 120, 144, 172.8, 207.4, and 248.8%.

Format: high-density 5.25 "diskettes.
Prices: $48 list, $43 AMS member.

AMSFonts for use on a Macintosh with Textures

0 Font Resolution: 72, 144, and 300 dpi (all resolutions included in each order.)
0 Magnification: The standard distribution includes fonts at 100% and 120%. An extended distribution,

containing all the standard 'I)$ magsteps, is also available.
Format: double-sided double-density 3.5" diskettes.
Prices: Standard (magsteps 0-1): $32 list, $29 AMS member. Eztended (magsteps 0-5): $48 list, $43 AMS

member.

SHIPPING AND HANDLING CHARGE: $8 per order in the US and Canada, $15 elsewhere.

HOW TO ORDER: Prepayment is required. Send orders to: American Mathematical Society, P. 0. Box
1571, Annex Station, Providence, RI 02901 or call the AMS at (401) 455-4000, or (800) 321-4AMS in the
continental U.S. and Canada, or write to: TEX Library, American Mathematical Society, P.O. Box 6248,
Providence, RI 02940. Fax: (401) 455-4004 Telex: 797192. When ordering AMSFonts for the PC, specify
desired resolution.

Public Domain TJ$
The public domain versions of software are available from Maria Code - Data Processing
Services by special arrangement with Stanford University and other contributing universities. The
standard distribution tape contains the source of w and METRFONT, the macro libraries for
AMS-T@, UTEX, S l i w and HP TI$, sample device drivers for a Versetec and LN03 printers,
documentation files, and many useful tools.

Since these are in the public domain, they may be used and copied without royalty concerns. A
portion of your tape cost is used to support development at Stanford University.

Compiled versions of TEX are available for DEC VAXIVMS, IBM CMS, IBM MVS and DEC
TOPS systems. Systems using a standard format must compile TJ$ with a Pascal compiler.

TEX Order Form

-
-
Tape
tape.

D is t r ibu t ion tapes: Font L ibrary Tapes (G F files)
Standard ASCII format - 300 dpi VAX/VMS format
Standard EBCDIC format - 300 dpi generic format
Special VAXIVMS format Backup - IBM 382013812 MVS format
Special DEC 20lTOPS 20 Dumper format - IBM 3800 CMS format
Special IBM VMICMS format - IBM 4250 CMS format
Special IBM MVS format - IBM 382013812 CMS format

prices: $92.00 for first tape, $72.00 for each additional tape. Postage: allow 2 lbs. for each

Documents :
.................... W b o o k (vol. A) softcover

......... W: The Program (vol. B) hardcover
............. METRFONT book (vol. C) softcover

... METRFONT: The Program (vol. D) hardcover
Computer Modern Typefaces (vol. E) hardcover

........... &TEX document preparation system
WEB language *
T~Xware *
B i b w *
Torture Test for TJ$ *

.................. Torture Test for METAFONT *
METRFONTware *
Metamarks * .

* published by Stanford University

Price $
30.00
44.00
22.00
44.00
44.00
30.00
12.00
10.00
10.00
8.00
8.00

15.00
15.00

Weight Quantity
2 -
4 -
2 -
4 -
4 -
2 -
1 -

Orders from within California must add sales tax for your location.
Shipping charges: domestic book rate-no charge, domestic priority mail-$1.50/lb, air mail to
Canada and Mexico-$2.00/lb1 export surface mail (all countries)-$1.50/lb, air mail t o Europe,
South America-$5.00/lb, air mail to Far East, Africa, Israel-$7.00/lb.

Purchase orders accepted. Payment by check must be drawn on a U.S. bank.

Send your order to: Ma r i a Code, DP Services, 1371 Sydney Dr ive, Sunnyvale, CA 94087
FAX: 415-948-9388 Tel.: 408-735-8006.

WYSIWYG ->
View your equation as
you create it. Then
insert into your T#
document with one
command.

30 West First Avenue

T# Edition ONLY $129.00
KTALK Co1urnbus, Ohio 43201
C O Y M U N l C A T l O N S = (614) 294-3535

Professional Edition $199.00
Shipping: $4 (U.S.A.), $25 (Canada), $35 (Overseas)
VISA, Mastercard and University and Government P.O.'s accepted.

FAX (614) 294-3704

TYPESETTING: JUST

e 2 50
PER PAGE!

Send us your TEX DVI files and we will typeset your material
at 2000 dpi on quality photographic paper - $2.50 per page!

Choose from these available fonts: Computer Modern,
Bitstream FontwareTM, and any METAFONT fonts. (For each
METRFONT font used other than Computer Modern, $15
setup is charged. This ad was composed with PCTEX@ and
Bitstream Dutch (Times Roman) fonts, and printed on RC
paper at 2000 dpi with the Chelgraph IBX typesetter.)

And the good news is: just $2.50 per page, $2.25 each for
100+ pages, $2.00 each for 500+ pages! Laser proofs $SO
per page. ($25 minimum on all jobs.)

Call or write today for complete information, sample
prints, and our order form. TYPE 2000,16 Madrona Avenue,
Mill Valley, CA 94941. Phone 415/388-8873.

T Y P E

Do more and do it better
with new PCTEX.
PC TEX, PC T~X1386 & Big PC T~X1386, Versions 3.0

Feature/Specification

Page & Memory Capacity mem-max
You won't see "'QX Capacity Exceeded"! 1 (1.00) 1 (Double!) / (Double!) I (Quadruple!)

pc*/386
3.0

131070

Hyphenation Table Size trie-size / 15000 / 30000
Space for hyphenation patterns 1 (1.00) 1 (Double!) 1 (Double!) / (Quadruple!)

Big
P C W / 3 8 6

3.0
262140

PCT@
2.93
65534

Complexity of hyphenation patterns

Maximum Trie Ops Per Language
Especially important for Dutch and German hyphenation

Buffer Size buf -size

P C W
3.0

131070

30000

2048 Trie Op Size trie-op-size/ 255 1 1024

Maximum # of characters on input lines 1 (1.00) 1 (1.46)

60000

1024
(1.00)

N/A

1024

Maximum # of simultaneous input sources

Maximum # of Strings max-strings

String Pool pool-size

(1.46)

Maximum # of characters in strings

Save Size save-size
Space for saving values outside current group

Maximum # of W Commands hash-size

(4.02)
512

1500
(2.93)

Stack Size stack-size1 200 1 200
(1.00)
4500
(1.00)
50000

1 (1.00) 1 (1.66)

(1.00)
600

(1.00)
3000

1 (1.00) 1 (1.00)

(4.02)
512

1500

200
(1.00)
5000
(1.11)
50000

(1.66)

Memory recommended for optimum performance

Font Memory f ont-mem-size
For TFM data storage

Maximum Fonts Per Job font-max

(8.03)
512

3000

300

(1.00)
2000
(3.33)
5000

(3.33)
Minimum Free RAM Required / 385K 1 385K

(3.38)

1 (1.00) 1 (1.00)

From PC 2.93 or earlier version (1 . 0) (1.00) / (1.98) / (2.98)

(1.00)
5000
(1.11)
60000

(3.38)
Minimum Free RAM Recommended I 550K I 550K

(1.00)
51199
(1.00)
127

Order yours today' 1 (1.00) 1 (1.00)

This all adds up to...
More power, greater performance, and increased memory capacity for
the latest versions of popular macro packages like LATEX and AMS-TEX.
And all three new PCTEX products feature the character sets and
hyphenation tables to handle even the most complex European languages.

Order today. Call (415) 388-8853.

(1.50)
10000
(2.22)
60000

(1.20:
2000
(3.33)
5000

1.3M

(1.00)

P E R S O N A L

(1.20)
4000
(6.67)
10000

1.3M

1.3M
(1.00)
65534
(1.28)
127

(2 00)
List Price 1 $249 1 $249

(1.18)

I N C
12 Madrona Avenue
Mill Valley, CA 94941

4.OM

(1.40)

PCTEX is a registered TM of Personal TEX. Inc. TEX 1s an Amer~can Mathematical Society TM. S ~ t e licenses abailable to qualified organirat~ons. Inquire about PT1 distributorships.
T h ~ s ad was typeret using PCTEX and the TABLE Macro Package with Bitstream and Computer Modern fonts.

(2.36)
65534
(1.28)
127

$295

$149 Upgrade Price 1 $50 1 $50

(7.27)
65534
(1.28)
255

$349

$99

V A

Including ETAF FONT
Executables $150
With source $300

T u r b o m Release 3.0 soft-
ware brings you the latest QX 3.0
and METAFONT 2.0 standards:
preloaded plain T)jX, bT$,
A M - Q X and AM-bT$, and
plain METAFONT interfaced to
CGA/EGA/VGA/Hercules graph-
ics; TRIP and TRAP certification;
Computer Modern and J4TS fonts,
and printer drivers for HP LaserJet
Plus/II/IIP, H P DeskJet, Postscript,
and Epson LQ and FX dot-matrix
printers. This wealth of software runs
on your IBM P C (MS-DOS or OS/2),
U s l s , or VAXIVMS system.

D Best-sell ing Value: Turbo-
'&$ sets the standard for power
and value among 'QX implemen-
tations: one price buys a complete,
commercially-hardened typesetting
system. Computer magazine recom-
mended it as "the version of w to
have," IEEE Softmure called it "in-
dustrial strength," and thousands of
satisfied users worldwide agree.

T u r b o m gets you started quickly,
installing itself automatically under
MS-DOS, and compiling itself auto-
matically under U N I X . The YO-page
User's Guide includes generous exam-
ples and a full index, and leads you
step-by-step through installing and
using T# and METRFONT.

Power Features: Turbo-
'&$ breaks the 640K memory bar-
rier under MS-DOS on any IBM-
compatible PC with our virtual mem-
ory sub-system. Even without ex-
panded memory hardware, yotl'll

have the same sized T)jX that runs
on multi-megabyte mainframes, with
plenty of memory for large docu-
ments, complicated formats, and
demanding macro packages (like
P I C Q X and A M - b T $ 2.0) that
break other QX implementations.
On larger computers, T u r b o w runs
up to 3 times faster in less memory
than the Stanford Pascal distribution.

D Source code: Order the Turbo-
%(source in portable C, and you
will receive more disks with over
85,000 lines of generously commented m, Turbo'QX, METRFONT, and
printer driver source code, including:
our WEB system in C; PASCHAL, our
proprietary Pascal-to-C translator;
and preloading, virtual memory, and
graphics code. TurboQX meets C
portability standards like ANSI and
K&R, and is robustly portable to a
growing family of operating systems.

D Avai labi l i ty & Requ i rements :
Turbo'&$ executables for IBM PC's
include the User's Guide and require
640K and hard disk. Order source
code (includes Programmer's Guide)
for other machines. Source compiles
with Microsoft C 5.0 or later on the
PC; other systems need 1 MB mem-
ory and a C compiler supporting
U N I X standard 110. Media is 360K
5-114" PC floppy disks; other formats
at extra cost.
D Upgrades: If you have Turbo-

Release 2.0, you can upgrade
the executahles for only $40. If you
have the source distribution, upgrade

both executables and source for $80.
Or, get either applicable upgrade free
when you buy the AP-'QX fonts (see
facing page) for $200!
D No-risk t r i a l offer: Examine
the documentation and run the P C
TurboQX for 10 days. If you are not
satisfied, return it for a 100% refund
or credit. (Offer applies to P C exe-
cutab le~ only.)

F ree Buyer 's Guide: Ask
for the free, 70-page Buyer's Guide
for more details on T u r b o w and
dozens of T@-related products: pre-
viewers, w - t o - F A X and '&$-to-
VenturaIPagemaker translators, op-
tional fonts, graphics editors, pub-
lic domain '&$ accessory software,
books and reports.

Order ing Turbo=

Ordering T u r b o m is easy and deliv-
ery is fast, by phone, F.4X, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

T h e K inch C o m p u t e r C o m p a n y
PUBLISHERS OF TURDO-Y

501 S o u t h Meadow S t r e e t
I thaca , N e w York 14850 U S A

Telephone (607) 273-0222
FAX (607) 273-0484

TEX Users
Take Note ,. ,,
Computer Composition Corporation offers the
following services to those who are creating
their technical files using TEX:

Convert your DVI files to fully paginated typeset pages on
our APS-5 phototypesetters at 1400 dpi resolution.
Files can be submitted on magnetic tape or PC diskettes.
Provide 300 dpi laser-printed page proofs which simulate
the typeset page. (Optional service $1.50 per page)

Macro writing and keyboarding from traditionally prepared
manuscripts in several typeface families via the TEX
processing system. Send us your manuscript for our review
and quotation.

Full keylining and camera work services, including
halftones, line art, screens and full-page negatives or
positives for your printer.
Quick turnaround (usually less than 48 hours!) on
customer supplied DVI files of 500 typeset pages or less.
From DVI files: first 100 typeset pages at $4.75 per page;
100 pages and over at $3.50 per page. Lower prices for
slower turnaround service.

For further information and / or a specific quotation,
call or write Frank Frye or Tim Buckler

AP-TEX Fonts Times Roman
485 TEX fonts identical to Times Bold

Adobe Postscript Fonts for $200 Times Italic
Get ready for the quality of Adobe Postscript Times Bold Italic
fonts for your T@ documents and non-post- Helvetica
Script printer! If you use any brand of with Helvef jca Bold
an HP LaserJet or DeskJet printer, the AP-

fonts from Kinch add a wealth of attrac- Helve tka Oblique
tive typefaces identical to the popular PatScript Helvefica Bold Oblique
extended font families. C o u r i e r
By de-crypting the Adobe coding, we are able Courier B o l d
to exactly translate the Postscript fonts into

font bit map and metric files. These trans- C o u r i er Obi i que
lated fonts include the renowned Adobe "hints," Courier Bold Oblique
which render the smaller point sizes of the fonts
with remarkable clarity on laser and ink-jet Avant Garde Book
printers. The fonts use the w character set Avant Garde Book Oblique
encoding and font metrics, including full kerning
and ligature programs. Avant Garde Demi

Avant Garde Demi Oblique
The AP-TE)(fonts, supplied on ten 360K 5-1/4" B
PC floppy disks, contain 35 typefaces in PK for- ookman Demi
mat (including font metric (TFM) files) for Bookman Demi Italic
300 dotslinch laser and ink-jet printers. The
fonts included are identical to the Adobe Post- Bookman Light
Script i~nplementations of the trade names and Bookman Light Italic
samples shown at right. The point sizes for each
typeface included are the w sizes 5, 6, 7, 8,
9, 10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points.
Headline styles (equal to Times Roman, Hel-
vetica, and Palatino, all in bold) also are in-
cluded a t 29.9, 35.8, 43.0, 51.6, 61.9, and 74.3
points.

Helvetica Narrow
Helvetica Narrow Bold
Helvetica Narrow Bold Oblique
Helvetica Narrow Oblique
New Century Schoolbook Roman

The Kinch Computer Company New Century S~h00lb00k Bold
PUBLISHERS OF TURBO*^ New Century Schoolbook Italic -

501 South Meadow Street
Ithaca, New York 14850

New Century Schoolbook Bold Italic
Telephone (607) 273-0222 Palatin0 Roman

FAX (607) 273-0484 Palatino Bold
Helvetica, Palatino, Times, and New Century Schoolbook are
trademarks of Allied Linot~pe Co. ITC Avant Garde. ITC
Bookman, ITC Zapf Chancery, and ITC Zapf Dingbats are
registered trademarks of International Typeface Corporation.
LaserJet and DeskJet are trademarks of Hewlett-Packard C o r p ~
ration. PostScript is a registered trademark of Adobe Systems
Incorporated. TEX is a trademark of the American Math Soci-
ety. T u r b W and AP-'QX are trademarks of Kinch Computer
Company. Prices and specifications subject to change without
notice. Revised February 8, 1990.

Palatino Bold Italic
~ a p f Chncery Medium Italic
Zapf Dingbats OQ%%BWff@+*I-*E++O
Symbol AW6AIlOZYQEY aPx6~(py

TEX FOR THE 90's

Are you still
struggling with

Move on to scalable
fonts:
Save megabytes of storage-entire VTEX fits on
one floppy.
Instantly generate any font in any size and in any
variation from 5 to 100 points.
Standard font effects include compression, slant,
smallcaps, outline, shading and shadow.
New: landscape.
Discover the universe of MicroPress Font Library
professional typefaces: not available from any
other TEX vender.
List price $399 Introductory offer $299

Includes the VTEX typesetter (superset of TEX), 10 scalable
typefaces. VI'IEW (arbitrary magnification on EGA, CGA, VGA,
Hercules, ATSrT), U S E R (HP LaserJet], VPOST (Postscript),
\'DOT (Epson. Panasonic. NEC. Toshiba, Proprinter, Star, DeskJet)
and manuals.
Introductory offer expires on September 1, 1990. S/H add $ j.

COD add $5. Wordperfect Interface add $100. Site licenses
available. Dealers' inquiries welcome. Professional typefaces
available for older implementations of TEX.

MICRO
m

VTEX IS a trademark ol M~croPress Inc Other Products rnentloned are trademarks of the11 respectve campantes

MicroPress Inc.
67-30 Clyde Street, #2N, Forest Hills, NY 11375

PRESS Tel: (718) 575-1816 Fax: (718) 575-8038

The American Mathematical Society can offer you a basic TEX publishing service. You provide the
DVI file and we will produce typeset pages using an Autologic APS Micro-5 phototypesetter. The low
cost is basic too: only $5 per page for the first 100 pages; $2.50 per page for additional pages, with a
$30 minimum. Quick turnaround is important to you and us . . . a manuscript up to 500 pages can
be back in your hands in just one week or less.

As a full service TEX publisher, you can look to the American Mathematical Society as a single source
for all your publishing needs.

For more information or to schedule a job, please contact Regina Girouard, American Mathemat-
ical Society, P.O. Box 6248, Providence, RI 02940 or call 40 1-455-4060 or 800-32 1 -4AMS in the
continental U.S.

469,479
468

cover 3
465
475
470

467,471

With TEXPIC Graphics language?: you will have the
tools to make graphics for yourTEX documents.

TEXPIC is now available from Bob Harris at:

MICRO PROGRAMS INC
25lJackson Avenue, Syosset N Y 11791

Telephone: (516) 921 1351.
'TUG Boat Volume 10, No. 4, Page 627
1989 Stanford Conference Proceedings

Index of Advertisers

American Mathematical Society 476,477 Kinch Computer Company
ArborText 479 Micro Programs, Inc.
Blue Sky Research 478 Micropress, Inc.
Cambridge University Press 474 Northlake Software
Computer Composition 473 Personal Inc.
DP Services 480 Users Group
K-Talk Communications 472 Type 2000

A Gentle Introduction to T@
A Manual for Self-study by Michael Doob

A Gentle Introduction to T$ is perfect
for the beginning T$ user.

Easy-to-follow and straightforward, this 89 page, softbound
manual reveals the basics behind

characters and words
paragraphs and pages

mathematics

@Lions, The Tgbooh, 1986; used by permission of ... with dozens of helpful examples and
Addison-Wesley Publishing Co. solutions in I1 friendly chapters.

/-

\I N Y @+y - &:<. -
-

> '> \-+ -
Available now

Special offer for TUG members . . . $10 from TUG
10 or more copies (members) $ 8 @- Users Group

\

Regular price . $15 P 0. Box 9506
Providence, RI 02940 U. S. A.

Discounts good through December 31, 1990 Phone: (401) 751-7760
Shlpplng U S $2 per copy Fax: (401) 751-1071

Outside of U S $3 per copy surface, $4 alr
MastercardNsa, checks and

Ask about TUG'S other publications for beginning Tgers zF-*+ -- money orders accepted

