
Structured Document Preparation System

AutoLayouter

Yoshiyuki Miyabe, Hiroshi Ohta, and Kazuhiro Tsuga
Matsushita Electric Industrial Co., Ltd., 1006 Kadoma, Kadoma-shi, Osaka 571 Japan
+81-6-906-4600. CSNET: miyabe%isl.mei.co.jpOuunet.uu.net

Abstract

We have developed a structured document preparation system
AutoLayouter, which consists of an easy-to-use structured editor
and a Japanese I4W based formatter.

Not only have we designed better user interfaces, but we
have introduced a simple document structure. A document
produced with AutoLayouter is a one-dimensional list with each
node corresponding to a logical component of the document.
This use of the simple structure largely contributed to making
the editor easy to use but powerful enough both for editing the
document structure and its contents, which may contain finer
substructures.

Since we use the simple structure, we had to append various
macros to complement the differences between our structure and
the I&= begin-end environments. We also developed a device
driver which converts dv i files to Kanji Postscript files.

Introduction

In Japan, most of the commonly used document
processing systems are Japanese word processors,
designed originally to produce beautiful documents
without having to resort to hand writing. The most
serious problem in early Japanese word processors
was to make Japanese input efficient, easy, and
fast. This problem has been almost solved by the
development of efficient Kana (Japanese alphabet)
to Kanji (Chinese character) conversion algorithms.
Now we face the second step in document processing
of Japanese.

From the beginning Japanese word processors
have been designed with some layout facilities, using
the fact that Japanese characters usually have the
same width; thus spaces and tabs may be used
to align them. In addition, Keisen characters,
special line characters, were created to solve other
alignment problems and to create tables of any
shape.

One direction for the advancement of Japanese
word processors is to augment the layout facilities,
in order to format documents more flexibly, as
English desk top publishing systems do.

On the other hand, our analysis of the Japanese
word processor market led us to conclude that

Japanese word processors are used with a great vari-
ety of documents and, therefore that some objective
other than just the beautification of documents is
indicated.

Among computer software people, Japanese
versions of T)$ and L 4 W are being used as
replacements for Japanese word processors. But
due to the complex syntax and the scarcity of
supporting tools, it is extremely difficult for the
typical users of word processors to take advantage
of W'S automated layout.

Basic Concepts of AutoLayouter

We developed AutoLayouter as a based docu-
ment preparation system whose objective is to give
W ' s power to the users of Japanese word pro-
cessors, and to induce them to write documents in
more logical ways, similar to those used in making
documents with I4W.

If the main task is to print documents, it is
reasonable to use paper-oriented document prepa-
ration systems such as Japanese word processors or
desk top publishing systems; but when the object
is to manage documents, other means are required.
Even in this case, if the size of a document is too
large for it to be developed by only one person,
one has to look for a better way to produce it.

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting 353

Yoshiyuki Miyabe, Hiroshi Ohta, and Kazuhiro Tsuga

Furthermore, when requirements of managing and
delivering documents increase, working with such
paper-oriented document preparation systems can
cause serious problems:

D o c u m e n t file contains layout i n f o r m a t i o n mixed

wi th text . In the word processor file, formatting
information is mixed in with the text. For in-
stance, special codes are used to specify the size
and location of titles. But when manipulating the
file in order, for example, to search the contents or
reuse them, these codes interfere and must often
be removed so that the text can be retrieved.

D o c u m e n t file format i s formatt ing s y s t e m depen-

dent . When delivering a document to another
person to be reworked, file format codes must be
compatible for both sender and receiver. Main-
taining such compatibility often creates imped-
iments to further development of the system
itself.

The AutoLayou ter project represents an at-
tempt to change the document prepartion style
in Japan. We focused first on logical contents of
documents, and put layout of the documents aside
temporarily.

Architecture

Figure 1 shows the architecture of AutoLayouter .

We put structured document files in the kernel
of the system, and in the near future, we shall
develop a document database to manage them. To
create the document files, we developed a structured
editor. The editor checks the document structure

Structured
Editor

Document Document
Delivery Tool Document Management

Filcs

Formatter r:_l
Output

Devices 1.11
Figure 1: Architecture of AutoLayou ter

whenever it is modified, and warns the user of
invalid operations. So the document structure is
always properly guaranteed.

The structured files are processed by a format-
ter that uses the Japanese version of U r n . We
also developed various device drivers including a
previewer and a Postscript converter for dv i files.
The whole system was developed on Panasonic's
Unix workstation BE using X Window System.

Structured Editor

Problem of structure-driven editing. Mark-up
languages such as SGML and IPW, when used with
a typical text editor, have the following advantages:

D o c u m e n t portability. Users may select any text
editor to make documents, so they can edit the
documents on any machine.

Edit ing efficiency. Since mark-ups are natural ex-
tensions of the process of inputting the text,
users can edit marked-up documents almost as
efficiently as normal documents.

Unfortunately, the use of these mark-up sys-
tems may result in the creation of documents con-
taining fatal syntax errors. Because the syntax rules
are too complicated for many users, error correction
may require more time than is reasonable.

Since our aim was to develop AutoLayou ter

for users of Japanese word processors, rather than
for programmers, we developed a structured editor
which may be used without any knowledge of mark-
up languages; and, best of all, it never produces
syntax errors.

Two kinds of structured editors may be consid-
ered:

Hypertext type. This type displays the document
structure and the document contents in separate
windows. So the editor normally consists of two
parts, one of which handles the tree structure of
the document while the other is concerned with
the text contents of each tree node. Although
one can view the document structure easily, it
is difficult to read the contents of the entire
document smoothly.

Tag embedded type. Roughly speaking, this type
extends the character set to include mark-up tags
which specify the document structure. Usually all
the tags look similar, which makes it difficult to
distinguish an important tag from unimportant
ones. To solve this problem, some systems use dif-
ferent fonts for contents with different structures
or they align the important tags outside the text
field.

354 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Structured Document Preparation System AutoLayouter

Figure 2: Snapshot of editor screen (in Japanese)

Document structure. We first designed a frame-
work of document structures. We took the approach
that the document structure provides ways to view
the contents; and that different views may make
it possible to perform appropriate processing. One
view may show the logical or semantic structure
of the document, and another its layout structure.
These two structures must be distinct. Tne next
design requirement is that the document structure
should be simple enough to be understood by users
of Japanese word processors.

Based on these initial ideas, we made a hierar-
chy of document structures as follows:

1) Logical structures indicate the semantics of
the text. That is, logical structures may be
used not only in formatting the document
but searching its contents from a database
and translating between different documents.
The editor displays logical structures as iconic
labels, outside the text field.

2) Structures specifying layout information only,
such as indentation or font changes, may be
embedded in the text as mark-ups. We modified
a text editor so that it can handle these mark-
ups as normal characters. .

3) Footnotes and references are exceptional logical
structures embedded in text, but should be
distinguished from the layout structures.

Snapshots of the editor screen are shown in
Figure 2 and Figure 3.

Figure 3: Snapshot of editor screen (in English)

Table 1: Logical structure component attributes

Classification I Attributes
Com~onent Id. I Label Name
~ u l e i I Max. Occurrences

I Min. Occurrences

Structure definition. The structure definition of
a document type is quite simple when compared
with a full-scale SGML.

An entire document is a one-dimensional list
of logical structure components such as title and
section, where the logical structure is specified using
restricted regular expressions. Each component of
the structure has attributes shown in Table 1.

In the table, Maximum and Minimum occurrences
for a component give the restrictions that apply
to the regular expressions for components of the
structure. Contents type can be text, file name,
integer, PostScript, and UTEX.

Substructures, such as layout structure to in-
dicate indentation, font changes, and so on, are
specified separately from the logical structure. The
substructures are embedded in the contents text
of the logical components in mark-up form. Mark-
ups for the layout structures have a type that
is one of quasi-character, begin-end, and toggle.
Quasi-character type inserts layout objects such as
skips and arrows. Begin-end type locally replaces
a property of the characters between the marks,

Display Mode

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 355

Contents Type
Priority Levels
Default Lines

Yoshiyuki Miyabe, Hiroshi Ohta, and Kazuhiro Tsuga

and toggle type changes a current property after
the mark. Type information for the marks provides
the formatter with instructions for recovering from
mark-up errors.

Architecture. We show the system diagram of the
structured editor in Figure 4, components of which
are explained in detail below.

Structure definition parser. This parses structure
definition files of the specified document type,
and generates rules to be used in the structure
editor.

Structure rule checker. When the user edits a struc-
ture component, the structure editor always asks
the structure rule checker if the desired editing
operation may produce an illegal structure. If the
answer is affirmative, the structure rule checker
returns the reason to the structure editor, and
the editor displays a panel which explains why
the desired operation is rejected.

Structure editor. Each component of the logical
structure is displayed as an iconic label outside
the text field, corresponding to its text contents.
One can edit labels with mouse operations. For
instance, to insert a label, the user clicks the
insert button on the label panel, and selects the
desired label from the label palette. Then the
user specifies a label on the editor screen, and the

Structured Editor

Structure

Definition Files

E.:e 1 17
Manager

User Interface

Definition Files

Structured

Document

Files

I

Formatter

Figure 4: System diagram of the structured editor

desired label is inserted. This design is similar to
that of a hypertext editor, mentioned above.

Contents text editor. The contents text editor is a
typical text editor customized using X Window
System's text widget. Kana-to-Kanji conversion,
which is managed in a front end processor, is
performed in a special window, and the converted
text is inserted by the text widget. Mark-ups
specifying fine structures such as layout struc-
tures and references are inserted from a pop-up
panel. Editing operations for the mark-ups can be
restricted to maintain legal nesting of begin-end
type mark-ups.

User interface manager. The editor's menus and
panels may be changed to suit the type of
document being edited. This is done using the
on-line manual, which explains how to use labels
and tags of the type of document currently being
edited. We parameterized all the menus and
panels which depend on the document type, and
stored the interface definitions in the definition
file. Each time the document type changes, the
manager consults the definition file and resets the
menus and panels appropriately.

Features. Our structured editor supports several
editing styles:

Top-down editing. When the editing process consists
of filling in the blanks in an existing form, the
labels corresponding to the items on the form
appear on the screen as default labels. When
articles are being edited, the default structures
include title, author, date, and abstract. Users
may construct any document structure simply by
using the mouse to insert or delete labels and to
specify the field to which the new ones apply.

Bottom-up edzting. Marking up a document is an ex-
ample of bottom-up editing. We support replace,
merge, and the splitting of labels by selecting
these options from a pull down menu. Other
useful forms of bottom-up editing involve cut-
and-paste of text strings.

Outline editing. Outline editing is not really an
editing feature, it is more like a different mode for
viewing a document. When editing, users may se-
lect one of three display modes: normal, one-line,
and selective. One-line mode displays only the
first line of the text corresponding to each label,
which allows the user to scan items thoughout
the document. Similarly, selective mode displays
only important labels, such as sections, and their
contents, where the labels that are important are
so designated in the label definition file.

356 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Structured Document Preparation System AutoLayouter

Structured Editor

Structured Document Files

--

Forma t t e r
r-

I
Document File

Converter

I Convention Rule Files

Formatt ing Processor

(L*TBY)

1 Style Files

I Device Drivers bz7

Figure 5: System diagram of the formatter

For matter

Architecture. The system's block diagram of the
formatter is shown in Figure 5 . A detailed ex-

planation of the components in the figure is as
follows.

Formatting processor. We use the Japanese
version of I 4 W as a formatting processor.

provides basic language facilities, such as macro

definitions, as well as a simple formatting model

which recursively constructs component boxes.

I4W appends various parts and environments
that are convenient for writing articles, that simplify

and speed up the preparation of style files.

Structured document file. The file consists
of labels and their text contents as described in the

document structure section.

Document file converter. This converter

reads the structured document file, and scans each
label and its contents. The conversion rules are

stored in the conversion rule file of the document

type. As described above, each label is converted to
its corresponding macro, and its contents become

the arguments of the macro. When the conversion is

performed, contents are checked to verify that they

satisfy the conditions required for their label, for

example, kind of text type (text, integer, file name,
reserved word, and so on).

Figure 6 shows how the document file converter

works. A typical line of the structured document
file is

The document file converter reads the conversion

rules written in the conversion table and makes a
I4?(file.

Style file. On the basis of the document type,

the formatter selects a corresponding style file.

On the whole, conversion from logical structure

to layout structure is a one-to-one mapping. One

exception is represented by sequential restraints

involving logical labels such as the requirement that

the label "caption" must always be followed by the

label "table". In such a case, style parameters will

be modified. In order to allow for such conditional
layout, we created a function to trace the sequence

of input labels.

Device drivers. We developed the following

device drivers to output dv i files to screen and

printers:

Preuiewer. The previewer displays printer images of

the formatted document on a X Window System.

Since the physical resolution of the CRT differs

greatly from that of current laser printers, we

display the characters on the screen using fewer
dots, scaling the same font used by the printer.

When scaling the font, we maintain the quality

of the display font by using an anti-aliasing

technique, in which the gray scale of each dot
is calculated in accordance with the number of

black points in the sampling area of the original

PTEX file

. dvi file e

\dacBparagraph { %
.
}\enddoc@paragraph

Figure 6: Document file converter

Style file
I \def \doc@paragraph { . . . } I

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Yoshiyuki Miyabe, Hiroshi Ohta, and Kazuhiro Tsuga

font. Furthermore, the previewer displays a small
magnifying window on the preview window, so
that a finer image of the formatted document is
also available.

Printer drivers. In addition to supporting raster
image printers, we developed a converter from
a dvi file to Postscript source code. With this
converter, graphics files written in Encapsulated
Postscript can be imported. In order to supply
various fonts to the raster image devices, men-
tioned above, we also developed a font manager
based on Japanese outline fonts. For English
fonts, we use those supplied with 7&X.

Concluding Remarks

Development of AutoLayouter is the first step in
the construction of our new Japanese document
processing system. The kernel of the system involves
structured document files and, for this, we have
developed an easy-to-use structured editor and a
I4QX-based formatter.

In the future we plan to construct a document
database in which structured documents are stored.
We will also need a style file editor. At this time,
style files are programmed directly using Bl&X
or TI-$, which may prevent users from changing
or creating their own styles; one possibility being
considered is a WYSIWYG editor to specify layout.

Acknowledgements

The authors would like to thank T. Ohno and
R. Kurasawa, who developed Japanese T ' , and
Lincoln Durst for his suggestions on this paper.

Bibliography

Adobe Systems Incorporated. "Encapsulated Post-
Script Files", Specification Version 2.0. Mountain
View, California, 1989.

IS0 8879. "Information Processing - Text And
Office Systems - Standard Markup Language
(SGML)". Geneva ISO, 1987.

Kurasawa, Ryoichi. "Japanese at ASCII Corpo-
ration" (in Japanese). Proceedings of l&X Users
Group Japan, TX - 97 - 5 (September 1987).

Lamport, Leslie. Urn: A Document Preparation
System. Reading, Massachusetts: Addison-Wes-
ley, 1983.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

