TUGboat, Volume 11 (1990), No. 4

Environment for Translating
METAFONT to POSTSCRIPT

Shimon Yanai and Daniel M. Berry
Abstract

This paper describes a program, mf2ps, that translates
a METAFONT font definition into a definition for the
same font in the POSTSCRIPT language. mf2ps is con-
structed out of the part of the METAFONT program that
extracts the envelopes of the letters; these envelopes are
converted into POSTSCRIPT outlines.

1 Introduction

This paper describes a program, mf2ps, that takes from
a METAFONT [10, 11] program for a font all the neces-
sary information in order to create an equivalent POST-
ScrIPT (1] font definition. The program makes use of
the front end of the METAFONT program to extract the
envelopes of the letters to produce the POSTSCRIPT out-
lines. What makes this process natural is that both
METARFONT and POSTSCRIPT make liberal use of Bézier
curves to describe non-circular curves.

By producing this translator, it is hoped to be able
to produce from METAFONT fonts POSTSCRIPT outline
fonts which are more compact than the bitmapped fonts
produced by the METAFONT program. Certainly the out-
line fonts are more easily scaled to other magnifications
and possibly even other design sizes than are bitmaps.
Moreover, doing so makes fonts heretofore available
only on TEX [9] and other DVI-based formatters, avail-
able on ditroff [8] and other formatters which have
evolved, or have been designed, for use with POST-
ScRIPT printers. This paper, which is typeset by ditroff,
uses a POSTSCRIPT version of the logo font in order to
print the word “METAFONT” in the same appearance as
in TEX-generated documents. Moreover, these new
POSTSCRIPT outline fonts can be used in TEX also! One
needs only the TEXpS [3] software.

The organization of this paper is as follows. Sec-
tion 2 presents the background of this work. Section 3
explains the rationale behind building the translator and
describes a previous attempt at writing the translator
and an approach to avoid. The software engineering
aspect of the translator is described also in Section 3.
The details of the implementation are exposed in Sec-
tion 4. Section 5 describes the operation of the pro-
gram. Section 6 evaluates the results. Finally Section 7
describes improvements to the translator that are left for
future work.

2 Background

Typesetter formatting systems such as TgX and ditroff

525

use fonts as raw material. The formatters accept mixed
text and commands as input and produce output, which,
if sent to the laser printers or typesetters, yields format-
ted text printed on pages. The laser printers and
typesetters use fonts, i.e., sets of printable patterns, one
per character, in various representations in order to
cause the desired characters to appear on the printed
form. For some printers, bitmaps are used, with I’s
representing inked dots and 0’s representing non-inked
dots. Other printers accept commands that cause draw-
ing of the characters, the printer providing the inked
dots according to the drawing commands. One such
popular command language is POSTSCRIPT, and its
usual use is to specify the outline of the character with
the interpreting printer filling in the outline with ink.
One popular method of describing fonts is with the
METAFONT language, in which declarative definitions of
how to paint the characters are given in terms of pen
path and pen shape. Another popular method is the
same POSTSCRIPT that many printers accept. The prime
difference is that the METAFONT program translates the
font definitions into bitmaps prior to sending the font to
the printer while a POSTSCRIPT printer translates the
outlines into bitmaps at the time of printing. Interest-
ingly, both the METAFONT language and the POSTSCRIPT
language use Bézier curves for describing the curves
followed by the pen or the outlines. As usually
configured these days, TEX uses bitmapped fonts in the
Computer Modern family generated by METAFONT, and
ditroff uses POSTSCRIPT outline fonts supplied by
Adobe.

The subsequent subsections delve deeper into
these issues in order to be able to state the goal of this
paper in the next section.

2.1 Fonts, design sizes, and magnifications. As
mentioned, fonts are the raw material of typesetting. A
font is a set of printable patterns, one for each charac-
ter, that causes printing of that character in a particular
recognizable style on the page. As mentioned, these
patterns can be represented by bitmaps or drawing
instructions.

Characters come in various sizes. There are two
independent notions of sizing for fonts, point size or
design size and magnification. The design size is the
size at which the character is designed to be used and
is, in well-designed text, the size in which the character
appears in final, printed copy. Design size is usually
expressed in units of points, which are each approxi-
mately 1/72 of an inch. Most normal text in books,
newspapers, and magazines is printed in 10 point type.
Headlines are larger, perhaps as large as 30 points. The
magnification of a font is the inverse of the ratio

526

between the design size of the character and the size of
the character as it emerges on the printer, the assump-
tion being that the final copy is a photo reduction of the
printed copy. Thus, if photo reduction halves linear
dimensions, one prints with magnification 2. If every-
thing is done right, then after reduction, the letter
appears at its design size.

A 10 point design sized font printed at magnifica-
tion 2 is similar to but not quite the same as a 20 point
version of the same font. For example, the serifs on a
large point size are smaller than they would be if strict
linear magnification were used. Other proportions, e.g.,
of x-height to cap-height and of width to height, are
also different. While many purists, Knuth included,
insist on using a different pattern for each design size,
many people accept magnification as yielding accept-
able fonts at other point sizes. If the unit of
magnification is not too big the results are acceptable
even to many purists.

2.2 Problems with bitmapped fonts. A bitmap for a
character is a rectangular array of bits covering the so-
called bounding box or frame that exactly contains a
letter. Figure 1 shows a low resolution bit map for the
letter “N” in a sans serif font. The inked squares or pix-
els are denoted by “1” bits and the uninked pixels are
denoted by “0” bits.

Figure 1

The low resolution example of Figure 1 illustrates a
major problem with bitmapped fonts. Curved lines and
straight lines that are neither vertical nor horizontal
cannot be represented exactly by a rectangular pattern
of pixels. One is forced to approximate them with rec-
tangular steps. At high resolution, e.g. above 1000 or
so, the human eye cannot see the steps, but at low

TUGDboat, Volume 11 (1990), No. 4

resolution the steps are quite apparent. Visible steps
are called “jaggies” after the jagged edges.

Bitmaps for a font must be built for each design
size, magnification, and resolution. If the resolution is
fixed, as is the case on most printers, a bitmap must be
built for each design size and magnification. An attempt
to use a given bitmap at a larger design size or
magnification by just enlarging ‘the area of each dot
yields a bad case of jaggies.

2.3 METAFONT and its environment. METRAFONT, a
language for the specification of fonts or typefaces, has
been used to provide fonts for the TEX family of
typesetting systems. A METAFONT user writes a pro-
gram for each letter or symbol of an alphabet. These
programs are different from the usual computer pro-
grams, because they are essentially declarative rather
than imperative, using an algebraic language to
describe the center stroke or edges of the characters.
The description of a letter in METAFONT is a set of equa-
tions describing the strokes. When combined with
parameters describing the pen shape and size, one gets
a full description of a letter. Sizes and shapes of pen
nibs can be varied in METAFONT and the characters can
be built up in such a way that the outlines of each
stroke are precisely controlled. Herein lies the advan-
tage of METAFONT; a font is easily specified and varia-
tions are obtained by varying parameters.

Currently, the program that converts a set of
METAFONT font descriptions into a bitmapped font
translates the description of a letter combined with a
point size and a magnification into a bitmap. This bit-
map can be sent to the printer to get a letter on the page.
Herein lies a disadvantage of METAFONT, a bit map
must be kept for each point size and magnification, and
this can require a lot of space.

2.4 The POSTSCRIPT language. The POSTSCRIPT
language is an interpretive programming language with
graphics capabilities. POSTSCRIPT’s extensive page
description capabilities are embedded into a general-
purpose programming language framework. The
language includes a conventional set of data types such
as numbers, arrays, and strings, control primitives such
as conditionals, loops and procedures, and some
unusual features such as dictionaries. In most POST-
ScrIPT fonts, each letter is described by an imperative
program tracing the outline of the letter. This tracing
may include curves given as Bézier curves, straight
lines, arcs, etc. A POSTSCRIPT printer interprets this
outline program to draw and fill in the letters on the
page. Some consider the imperative nature of POST-
SCRIPT to be a disadvantage in comparison to META-

TUGboat, Volume 11 (1990), No. 4

FONT’s declarative nature. The main advantage of
POSTSCRIPT relative to METAFONT is that one needs to
keep only the outline. If, as in the usual case, the out-
line is specified in terms of a fixed path through
Euclidean two-space, this outline may be scaled arbi-
trarily to yield any magnification. The scaling is done
by the POSTSCRIPT interpreter at the printer. Thus the
different magnifications do not require any additional
storage space. Actually, the outlines are kept as if they
were for the Adobe-standard 1000 dots per emm, which
at a design size of 10 points amounts to 7200 dpi.
Because a typical phototypesetter has a maximum reso-
lution of about 2500 dpi, the outlines are said to be
arbitrarily scaleable. If the outlines are kept, as are
many. METAFONT definitions, as paths through points
calculated by the outline program, then it is possible to,
say, make serifs grow more slowly than linearly. It
would then be possible to have one POSTSCRIPT font
scaleable to all design sizes. Generally, outline fonts
are not written this way, so that strictly speaking they
are scaleable only to all magnifications.

In addition, the POSTSCRIPT language has a way to
work with bitmapped fonts. While the POSTSCRIPT
printer can scale them before printing, the end result is
that each of the fixed number of dots in the bitmap is
made larger or smaller. Since the human will see larger
dots as jagged lines, such fonts are not really con-
sidered scaleable.

2.5 Bézier curves. Both METAFONT and POSTSCRIPT
use Bézier cubics to specify curves. For the Bézier
form, four points are used, the start point, the end point,
and two control points, as shown in the top half of Fig-
ure 2. The tangent vectors of the endpoints are deter-
mined from the line segments PP, and P3P4. The
mathematical introduction of the Bézier form when
given four points P, P,, P3, and P, is

z(t) = (1=’ Py + 31 (t=1)2P, + 3t3(1-)P; + 1°P,,

forO<r<1.

Two characteristics of the Bézier form tend to
make it widely used in graphics. First, by choosing the
control points one can easily mold the curve to a
desired shape. Second, the four control points taken in
another order define a convex polygon, P; P, P, Py P,
in this case, the convex hull, which bounds the Bézier
curve. The convex hull is useful in clipping a curve
against a window.

When a METRFONT user specifies a path, METR-
FONT creates a list of knots and control points for the
associated cubic spline curves. If the user has not
specified the control points explicitly, METAFONT itself

527

finds some for the splines of a curve, while POSTSCRIPT
requires all the four points to be explicitly given.

)

Figure 2

3 METAFONT to POSTSCRIPT compiler—
why and how

This section describes a major performance problem
with METAFONT-generated fonts that perhaps can be
solved by translating them into POSTSCRIPT fonts. The
goals of this translation are established. Based on these
goals, a particular approach is adopted to engineer the
software largely from existing components.

3.1 A problem with METAFONT-generated bit-
mapped fonts. [n METAFONT, one gets one bitmap per
point size and magnification. The size of these bitmaps

528

grows as the square of product of the design size and
the magnification and requires a large storage space.
Files that are sent to the printer will be large, especially
if lots of different point sizes or magnifications are
used. In POSTSCRIPT with outline fonts, there is one
outline per character which can be scaled arbitrarily to
any magnification that might be needed. Moreover,
POSTSCRIPT outline fonts are generally more compact
than bitmapped fonts. For example, an enclosed rectan-
gle is represented by its four corner points rather than
by all the bits enclosed by the rectangle.

Certainly the outline fonts are more easily scaled
to other magnifications. By scaling the bitmapped fonts
downward, too much information is lost, and scaling
upward introduces the jaggies. Moreover, the pixel
array is device dependent; it is valid for output devices
of only one particular resolution and one choice of pos-
sible data values per pixel. Scaleable fonts have a great
advantage — you need only one font description file for
all magnifications of that font. Actually, POSTSCRIPT
outline fonts are more scaleable even than the META-
FONT originals for another reason. In [9], it is said,
“Caution: before using this ‘at’ feature (i.e. scaling
downward or upward) you should check to make sure
that your typesetter supports the font at the size in ques-
tion; TEX will accept any (desired size) that is positive
and less than 2048 points, but the final output will not
be right unless the scaled font really is available on
your printing device.” Getting POSTSCRIPT outline ver-
sions of METAFONT fonts is possible since both are
based on Bézier curves. Doing so makes fonts hereto-
fore available only on TEX and other DVI-based for-
matters available on ditroff and other formatters which
have evolved to or have been designed for use with
POSTSCRIPT printers.

3.2 Goals. Based on the observations of Section 3.1,
the goal of this research is to produce a METAFONT to
POSTSCRIPT compiler, mf2ps. Its operational require-
ments are items 1 through 5:

1. It must be possible to translate any legitimate
METAFONT font definition at any given design size
into a POSTSCRIPT outline font.

2. The resulting POSTSCRIPT outline font should be
arbitrarily scaleable.

3. The resulting fonts should look like the bitmapped
fonts when printed on the same printer.

4. The resulting POSTSCRIPT outline font should be
more compact when sent to the printer than a
POSTSCRIPT version of the METAFONT-generated
bitmapped font.

TUGboat, Volume 11 (1990), No. 4

The fourth requirement deserves a bit of explanation
and qualification. First note that what is compared is
what is sent to the printer. Certainly there are
compressed versions of the bitmapped fonts that reduce
the disk storage requirements of the bitmapped fonts.
However, they must be uncompressed before sending
them to most printers. It is the printer’s storage that is
limited; generally disk space is in abundance. However,
since printers these days are general purpose comput-
ers, what a printer accepts may in fact be a compression
that it has been programmed to undo.

Now for the case in which disk space is of con-
cern, the comparison should still be relative to printable
versions. There exist algorithms, e.g. that of Lempel
and Ziv [13] that can be used to compress POSTSCRIPT
outline fonts which are, after all, just ASCII files.
Therefore, in order not to have a contest between
compression algorithms, the uncompressed versions are
compared. Furthermore, in order not to have a contest
between different kinds of printers that may have
differing font representations, POSTSCRIPT outline fonts
are compared to POSTSCRIPT bitmapped fonts. When
considering disk space, the fact that one bitmapped font
is needed for each magnification is taken into account.
Thus, the interest is in comparing the size of a scaleable
outline font to the total storage for the bitmapped fonts
for all magnifications of a given design size.

5. The resulting POSTSCRIPT outline font should be
more compact than the total of the sizes of the
POSTSCRIPT versions of the METAFONT-generated
bitmapped fonts at each available magnification.
Even this comparison is not completely fair since
only specific magnifications are provided, while
the POSTSCRIPT font is arbitrarily scaleable.

Observe finally, that the comparison is against
magnifications of a single design size since purists
would argue that there should be a different outline font
for each design size. Since there are those that do not
require this purity, the various design sizes will be com-
pared also.

The software engineering goal is item 6.

6. mf2ps should be written as much as possible using
the existing METAFONT program both to save work
and to ensure that all METAFONT-acceptable font
definitions are handled.

The evaluation of the results will be done relative to
these goals.

3.3 Previous attempts. Leslie Carr wrote a collection
of programs to produce POSTSCRIPT outline fonts from
METAFONT fonts in 1987. Carr’s programs take as input

TUGDboat, Volume 11 (1990), No. 4

the log output file of METAFONT which contains a
description of all the paths that METAFONT traces out in
drawing a character.

Carr has problems of information loss as a result
of not having entered into the METAFONT program. This
is the reason why Carr’s characters are poor looking. In
[5], Carr observes, “In the cmr10 font, the crisp pen
has diameter zero, so serifs have square corners. In the
cmtt 10 font, crisp is set to a larger value and the
serifs end in semicircles. Because the shape of the
current pen can NOT be taken into account in POST-
ScriPT, these differences in the characters shapes will
not be seen. This is a fundamental problem: given a
path p and a pen ¢ (whose shape is also an arbitrary
path), METAFONT effectively envelopes p with respect to
the shape of ¢; POSTSCRIPT can do nothing other than
stroke it to produce a line of constant width. This
incompatibility comes to light when the width of the
pen is significant to the shape of the character”.

In order to avoid this problem, mf2ps finds the
internally generated envelope, which is used as the
boundaries of the inked region, and uses this envelope
as the outline. It does not matter, then, what the pen
path and the pen shape are.

More recently, during the time that the work
described herein was being done, there were other
efforts with similar goals.

Doug Henderson [6] obtained outline font charac-
ters by modifying the endchax macro, which is called
for each character after the bitmap is generated, to take
the bitmap for the character and white out all but the
bits on the edge. The number of bits left on the edge is
varied according to the resolution of the bitmap. These
outlines, being bitmapped, are just as unscaleable as are
the bitmaps for the filled-in characters.

Neil Raine and Graham Toal [12] have developed
software that takes the bitmaps and rediscovers the out-
lines by tracing the pixels. The outlines that are used as
the basis for POSTSCRIPT fonts are, for the most part,
generated from bitmaps at 2400 dpi. They first generate
RISC OS outline fonts which are screen fonts for
Acorn’s Archimedes RISC computer. These are true
scaleable outlines. Then, these outlines are converted
into POSTSCRIPT format. Toal says that the the quality
of the fonts produced is not too great at low resolutions
because of shortcomings in Adobe’s rendering algo-
rithm. He adds that at 1200 dpi on a phototypesetter,
they are indistinguishable from METAFONT-generated
bitmapped fonts. These authors suspect that information
that is critical for good appearance is lost when tracing
an outline on a bitmap generated from a mathematically
described envelope. Better results should be obtainable
using the original envelope.

529

John Hobby [7] has developed a program called
MetaPost, which translates from an extension of META-
FONT into POSTSCRIPT cubic splines and commands.
His goal was to turn METAFONT into a system for
typesetting general graphics, including embedded text.
His approach, similar to ours, was to modify the META-
FONT program into what he desired. Befitting his more
general goals, besides modifying the output, he has
added new commands to the input language. Moreover,
his translation appears to be a direct mapping from a
METRFONT command sequence to a POSTSCRIPT com-
mand sequence. The result is a program more powerful
than mf2ps. It will be interesting to compare fonts pro-
duced by MetaPost and mf2ps for appearance and per-
formance.

3.4 Methodology. There are a number of ways to
build the compiler. They include

1. writing the whole compiler from METAFONT to
POSTSCRIPT from scratch: This has the advantage
that one does not have to get into another person’s
software, which is not very pleasant when the
software is so big. On the other hand, one would
have to treat the whole job of turning mathemati-
cal equations and any arbitrary pen shape into out-
lines.

2. using the METAFONT output as was done by Leslie
Carr [5]: This has the advantage of not requiring
delving into another’s software, but the generated
information is not enough if one wants no devia-
tions from the originals.

3. getting into the METAFONT program: This requires
examining the internals of the METAFONT program.
However, METAFONT and POSTSCRIPT make
liberal use of Bézier curves to describe non-
circular curves. This fact makes the translation
process natural. For each specified path, META-
FONT creates control points for the associated
cubic spline curves before calculating the bit map.
METAFONT also calculates the edge offsets implied
by the pen shape. Using the necessary information
one can get a new set of control points that define
Bézier curves and lines that are needed to build the
POSTSCRIPT outline fonts.

3.5 Software engineering of solution. The idea is to
split the METAFONT program into front end and back
end. The front end takes METRFONT specification of a
character, magnification, and point size, and produces
the envelope, i.e., the outline of the character, and the
back end fills the envelope with bits. Taking the exist-
ing front end and writing 2 new back end that converts

530

the envelope into a POSTSCRIPT specification of an out-
line is our method of producing mf2ps. The bit-filling
process will be done by the printer.

In order to make POSTSCRIPT fonts arbitrarily
scaleable, we have to ask the mf2ps program to use a
very large magnification, at least to try to match the
grid on which Adobe plots the points of its outlines.
Adobe plots its characters on a 1000 x 1000 grid. Thus,
Adobe’s resolution is 1000 dpm (dots per em), which
for design size 10 points is 7200 dpi. Unfortunately,
METRAFONT, and thus mf2ps accepts resolutions only up
to 3000 dpi. The results should be sufficient to produce
fonts scaleable up to magnification 7 or &, which is a
reasonable range in typesetting.

This approach helps meet goal 6 because the origi-
nal unchanged METAFONT program is used. Thus,
exactly the same input is accepted as in the METAFONT
program. There is some extra frosting obtained by the
chosen approach. The program for translating META-
FONT to POSTSCRIPT is actually a bit of an interactive
environment because the new back end is an extension
of the existing one. This existing back-end provides an
interpreter that executes a METAFONT character
definition and displays the defined character on the
screen. Figure 3 shows the dump of a screen containing
several windows, one showing a METAFONT definition,
another showing the result of its interpretation, and a
third containing the POSTSCRIPT translation of the
definition in the first window. If software to interpret
POSTSCRIPT definitions were available here, a fourth
window could be set up showing the result of interpret-
ing the translation of the third window. This would
allow comparison of the character’s appearances
without having to print them on paper.

4 The program

In the following discussion, the METAFONT program is
often called just “METAFONT”.

The METAFONT program has been written so that it
can be made to run efficiently in a wide variety of
operating environments by making comparatively few
changes. Such flexibility is possible because the pro-
gram is written in the WEB language which is at a
higher level than Pascal. The preprocessing step that
converts WEB to Pascal is able to introduce most of the
necessary refinements. Semiautomatic translation to
other languages is also feasible, because the program
does not make extensive use of features that are pecu-
liar to Pascal.

The program has two important variations: First,
there is a long and slow version called INIMF, which
does the extra calculations needed to initialize META-
FONT’s internal tables. It has to be run first. It initializes

TUGDboat, Volume 11 (1990), No. 4

everything from scratch without reading a base file, and
it has the capability of dumping a base file. Secondly,
there is a shorter and faster production version called
VIRMF, which cuts the initialization to a bare minimum.
It is a virgin program that needs to input a base file in
order to get started. VIRMF typically has more memory
capacity than INIMF, because it does not need the space
consumed by the dumping and undumping routines, etc.

In order to generate a compiler that translates
METAFONT to POSTSCRIPT, additional external pro-
cedures and functions were added to the METAFONT
program so that it runs exactly the same except that
when it asks for an output file name, it asks for an addi-
tional name, for the extra output file that is to contain
the POSTSCRIPT outlines. Those changes were made on
the Pascal version of the VIRMF, and were compiled
later with METAFONT’s library files. (It was a complete
oversight on our part not to have modified the WEB ver-
sion of VIRMF.) A few extra lines were added to the
macro file, plain.mf. These act as flags, identifying
that METAFONT has entered some of the macros.

4.1 Basic idea. To specify a character in METAFONT,
one specifies either an envelope (outline) or a center-
line path and a pen head. For the former, METAFONT
just fills the envelope with bits. For the latter, META-
FONT pretends that it is drawing the character with a
pen of specified head shape following the specified
path, i.e., the center of the head stays on the path. The
distance from the center-line path and outer edge of ink
trail left by pen head is called the offset. So, for a char-
acter, METAFONT follows the center-line path to calcu-
late the path of offset points, i.e., the envelope, and then
fills the envelope with bits. In either case, METAFONT
ends up filling an envelope.

We need to break METAFONT into a front end and a
back end at the point just after the envelope has been
calculated. Then we provide a new back end that con-
verts the envelope into POSTSCRIPT instead of filling
the envelope with bits. Note then that the POSTSCRIPT
printer will fill in the envelope with bits as it fills the
path obtained from the envelope.

The following subsections describe the data and
the calculations involved in the new back end.

4.2 Data structures. The main data structures that
METARFONT keeps for a character are the center-line
path, the pen shape, and the envelope path. There are a
few operations that can be performed on paths, called
transformations.

4.2.1 METAFONT’s path representation. When a
METAFONT user specifies a path, METAFONT creates a
list of knots and control points for the associated cubic

531

TUGboat, Volume 11 (1990), No. 4

[

((([¥9] udel® Je11a| maJgaH

Jw | oquAsAw) Jur Asyjewdw) (i 8sequa) ju grAsSwoiw)
BTASWOAW, .

(papeo|aJd aseq ou)

wxx 481 1dWOY 1d1a353S0d 01 INGIVLIW PEPPAGUWE 4w
XINN Aa(axJag 404 BT UOLSJIBA ‘LNOJVLIW St SHUL

ug (uz8) AJeuoi1oLp a|oym 8yy Buijesuo nok aay

dui 81y LNdLND 40 Bweu Jajuy
dzuund

‘[ez

¢

038AIND vis
018AJNI gEG 942 28§ 282 895 BrZ
o3aut] 98¢ B8EC
038ULL 8BS OEZ
08Ul 965 vEZ
018AJND 8BS 9EZ Z@S 922 v18 Bid
o3surl pZ9 @22
038Ut 929 B1Z2
018AJND @29 812 2Z¥9 B8IZ 959 812
o38ui| 889 922
ojeut| ¢t9 822
018A4N3 B/9 822 249 BZZ L9 BEC
o38uLtL 9.9 2E2
018U 8.9 PEZ
018Ul 949 262
oieui| g.9 Ze2
o38uUL| BL9 PEZ
038uL| BEY 9L

018A0W gBY BEZ
yied mauy,

M6 60—
wels 348 % ‘eg1z{umop}- - {umoplerrz’ ‘-’
{0TA-TTA (BT *-TTX)2}80TZ 40J1S meJpi|ty

f@=£TA 100 ([TTAUpTAIZ =ZTA (QTAG =TTA [1pTZ=1E12Z N PUNCIY=[ETX 14|

‘[gz‘zz]uanereym=p1z ([MG’ ‘TIX]p' =ZTX=ATX NG'T PUNOIY=LTIX 34|
‘(gg'4tenlpisod {(gfeauna dea)grsod ((g‘easnd dea)zisod
f(p‘weis)fisod {(pg-‘4irey desypisod

ways ybia % fegz{umop}’ - {umop}sgz ax%oJ1s MmeJdp| |4

Zz]Jenetleym=62 NGy -BH=pX {gZ=gZ {(g‘Jley ded)gsod !(g‘siey ded)gsod

LeuoBelp 14o0ys ¢ ‘ajoka{dn} {122-152}492"

dgz{dn} {LLA-0 A (LLR-a28)p}Lez{umop} © - {1G2-4s2} (92" "
1gz{umop} * * {JGA~1CGA (UGX-1GX)IP}IGZ medpLity
f[422°1G2]uenBreym=0Z f0-1yBLay X=|A 10Q !TA=GA
fpx=gn f[zxfgR]gr=gX “mam|A:<|3vﬁ:30Lm.—mx 141
f(gsways ded) sod {(pg‘uwelrs ded)gsod (G, ‘wsis ded)gsod
teuobeip Buo| % fe|2akn{dn} - -Juzz---

agz rapz{dn} L[YA-IapA (L x—dpXIpYLyZ{umOp} - | €T~
1z 17z{umop} T A- L TAC(ITX-1TX)y T2 medpty
f[apzitz)densreym=pgz ([Jpzf|T2]JeABTRYM=Z2 fp=|}A 100 y=4TA doy
€508+ (N-M)PUNOIY=apR 14 (EX—M=nG’ Z=zX {Sde_n punodys|Tx 34|

‘{gr ways dea)psad f(ggwels ded)gsod !(pp‘wers dea)zsod f(g/‘wars ded)1sod

fqiuceuty dnyagd f(@'B)3ts asnfpe
(@ #14Bray ase ¥NIT*,001,200)Jeyduibeg
. MmeJgeH, JEYIWI

ysasuity - (o03f|eys

=

useaasiuLdd ¢~ £ UOWLS/JISN/ 0|SO

Figure 3

532

spline curves. If the knots are zy, z,,..., z,, there are
control points z{ and zf,; such that the cubic splines
between the knots z, and z;.., are defined by the Bézier
formula

2(t) = B (24,2, 2411244130
=(1=1z, +3t(t - 1)z}
+ 3t2(1 = Dzkse + [35k+1 s

forO0<r<1.

There is a 7-word node for each knot z;, cpntain-
ing one word of control information and six words for
the x and y coordinates of z; and z; and z}. The control
information appears in the left type and right type
fields and they specify properties of the curve as it
enters and leaves the knot. There is also a link field,
which points to the following knot. Before the Bézier
control points have been calculated, the memory space
they will ultimately occupy is taken up by information
that can be used to compute them. The METAFONT
make_choices procedure chooses angles and control
points for the splines of a curve when the user has not
specified them explicitly.

4.2.2 METAFONT’s path transformation. When
METAFONT digitizes a path, it reduces the problem to
the special case of paths that travel in the first octant
directions; i.e., each cubic z (¢) = (x (¢),y (¢)) being digi-
tized will have the property that 0 < y’(r) < x’(r). This
assumption makes digitizing simpler and faster than if
the direction of motion has to be tested repeatedly.
When z(#) is cubic, x'(r) and y’(¢) are quadratic, hence
each of the four polynomials, x'(r), y'(¢), x"(r)-y'(r),
and x’(¢)+y’(¢), crosses through 0 at most twice, If we
subdivide the given cubic at these places, we get at
most nine subintervals. In each of these intervals each
of x(8), y'(t), x'(£)~y’(¢), and x’(¢)+y’(¢) has a constant
sign. The curve can be transformed in each of these
subintervals so that it travels entirely in first octant
directions, if we exchange x and —x, y and -y, and x and
¥ as necessary.

4.3 Pens and envelopes. There are two kinds of pen
heads that may be used, polygonal and elliptic. There
are a number of trade-offs involved in their use. The
first subsection treats the case of an n-vertex polygonal
pen shape and the second treats the case of an elliptical
pen shape. Both describe the influence of pen shape on
the envelope of the font.

4.3.1 Polygonal pens. Suppose that the vertices
of a polygon are wg, wy,..., w,_|, W, =W in coun-
terclockwise order. A convexity condition requires that
each vertex turns left when one proceeds from wg to
w; ‘- tow,. The envelope is obtained if we offset a

TUGDboat, Volume 11 (1990), No. 4

given curve z (¢) by w, when that curve is traveling in a
direction z’(r) lying between the directions wi—w;_;
and wy . —w;. At times 1 when the curve direction z’(f)
increases past wy, —w;, METAFONT temporarily stops
plotting the offset curve and inserts a straight line from
z(t)+wy to z(t}+wy,q: notice that this straight line is
tangent to the offset curve. Similarly, when the curve
direction decreases past w,—w;_;, METRFONT stops plot-
ting and inserts a straight line from z(f)4w; to
z (t)+w,_y; the latter line is actually a retrograde step,
which will not be part of the final envelope under
METAFONT's assumptions. The result of this considera-
tion is a continuous path that consists of alternating
curves and straight line segments. The segments are
usually so short, in practice, that they blend with the
curves.

4.3.2 Elliptical pens. To get the envelope of a
cyclic path with respect to an ellipse, METAFONT calcu-
lates the envelope with respect to a polygonal approxi-
mation to the ellipse. This has two important advan-
tages over trying to obtain the exact envelope:

1. Polygonal envelopes give better results, because
the polygon has been designed to counteract prob-
lems that arise from digitization; the polygon
includes sub-pixel corrections to an exact ellipse
that make the results essentially independent of
where the path falls on the raster.

2. Polygonal envelopes of cubic splines are cubic
splines. Hence it is not necessary to introduce
completely different routines. By contrast, exact
envelopes of cubic splines with respect to ellipses
are complicated curves, more difficult to plot than
cubics.

4.4 Taking out data. After METAFONT has calculated
the paths and the offsets, it is ready to send the values to
the make_moves procedure which generates discrete
moves for any four points that represent a Bézier curve.
This is done for each one of the cyclic paths from
which the letter is built. When the offsets are zero, this
is done by the fill_spec procedure. Otherwise this is
done by the fill_envelope procedure. In the latter case,
the line segments, which were discussed earlier, should
be taken out also in order to get smooth connections
between the different curves that the cyclic path is built
from. Because POSTSCRIPT describes any shape in
terms of curves and lines, this is the point to take
advantage of METAFONT’s calculations, i.e., when
METAFONT calls the make_nioves procedure and when
METAFONT draws line segments for offset corrections.

4.5 Processing the data. The generated data are not

TUGboat, Volume 11 (1990), No. 4

ready yet to be used. First, we should unskew, i.e.,
transform from the first octant back to the original, the
paths according to the octant that the paths were trav-
eled in before they were skewed. This unskewing is
done by taking out the octant number at the moment
that the make_moves procedure is called and then using
METRFONT’s unskew procedure that sets values x” and
y’ to the original coordinate values of a point, given an
octant code and coordinates (x,y) after they have been
mapped into the first octant and skewed; the new values
are sent to the send_p_s procedure. This procedure has
eight formal parameters that are all used when sending
a curve. When sending a line, only four parameters are
used, two to denote the start point and two to denote the
end point; the remaining four parameters are sent as
zeros so send p_s can distinguish whether a line was
sent or a curve. In the next step, send_p_s unscales the
numbers because METAFONT works with units of scaled
points, of which there are 2'® in an ordinary point.
While unscaling, the values are transformed in order to
send them to the POSTSCRIPT dictionary FontBRBox
command. After this pre-processing, the data are sent to
a temporary file.

4.5.1 Getting more information. When META-
FONT calls the make_moves procedure, it does not have
any information on the role that this path is going to
play, whether the current cyclic path is going to be
filled or whether it will act as a boundary of a region to
be erased.

In order to distinguish between the cases, more
information has to be taken. This is done by copying
the plain.mf file into a new file named
myplain.mf and adding a few lines to it. The addi-
tional code was added in order to identify METRFONT’s
use of the macros. METAFONT uses the variables for date
only once, when the program is started, so it was
decided to use them in the rest of the program. The
year is changed to ~1 when METRAFONT’s
pen_stroke macro is applied on a cyclic path, i.e., in
the characters such as “o0”, “0”, and “Q”, and to -2
when the erase macro is called. The month is
changed when the £i11 macro is called. There are
three kinds of paths:

1. paths to be filled are processed using the POST-
SCRIPT £111 command.

2. paths to be stroked are processed using the POST-
SCRIPT eofill command.

3. paths to be erased are processed using specialized
procedures which will be discussed later.

A letter cannot always be treated as one unit by
means of the £i11 and eofill commands. For

533

i1}

instance, the letter “Q” is built of two different paths,
the first of which is stroked and the second of which is
filled. Generating the letter using the POSTSCRIPT
eofill command causes a hole in the image (see Fig-
ure 4).

Figure 4

So while generating a letter, fill mode can be changed
for each cyclic path. Moreover, when generating a
letter whose paths should be filled, it is not always pos-
sible to use just one £i11 command (see Figure 5).

Figure 5

When a POSTSCRIPT £i11 command is applied to a
path that is composed of more than one subpath, say
two for the sake of simplicity, and one subpath is inside
the other and is drawn in a direction opposite to the
external one, the internal path is considered a hole and
is not filled (see Figure 6). So, if several paths are to be
filled in this manner, the description of each one of
them should be ended with the £111 command. There
is one more benefit to using this strategy: The POST-
SCRIPT current path stack becomes empty after
encountering any kind of £i111 command. Therefore,
using the £i111 command after each path can help
avoid stack overflow errors if all paths
together are too long.

4.5.2 Treating erasing paths. There are three
methods of handling the problem of paths that should
be erased by mf2ps itself:

1. filling with white: Because erasing paths are built
in order to erase an existing filled area and POST-
SCRIPT overlaps paths (i.e., a region is shown in
the color that was drawn last), erasing paths can be
implemented by filling those paths with white.
This solution is the easiest, but it works only if the
background is white and the letter is drawn in
some level of gray. If one wants to draw a letter
with background other than white, the resulting

534

Figure 6

appearance will not be correct.

. calculating new paths resulting from subtracting

the erasing paths from the previous filled paths:
Such a solution can be global. However, it costs a
lot in terms of processing time and accuracy,
because paths are given implicitly by four points,
and in order to calculate the new paths, one should
find the intersection points of Bézier curves, i.e., to
find points that lie on both Bézier curves, and then
calculate new curves, which are difficult to calcu-
late from those points.

. using the POSTSCRIPT eoclip command: Be-

cause the letters are bounded in a 1000 x1000 box,
a primary square path whose segments are 1000
units long should be declared and after it all the
erasing paths should be listed. After relocating the
erasing paths we are ready to declare eoclip,
which means that the clipping path is the external
primary one and the internal paths, the erasing
paths, are holes. This is an elegant solution that
uses the power of the language and is available in
simple situations in which there is no intersection
between the erasing paths (see Figure 7). If there
were intersections, a little more sophisticated use
of the eoclip command would be needed. Relo-
cation of the erasing paths is done by the pro-
cedure doarrange.

TUGboat, Volume 11 (1990), No. 4

Figure 7

There are other problems caused by the erasing
paths. Because the erasing paths have segments in com-
mon with paths to be filled, POSTSCRIPT must decide
whether the common segments are in the clipping path
or not. POSTSCRIPT does not seem to have a consistent
policy on that and it seems to be that the decision is
taken arbitrarily (see Figure 8).

X

Figure §

An attempt to resolve the clipping path problem led to
the first author sending the following electronic mes-
sage (obviously, not as nicely formatted as herein) to
Glenn Reid of Adobe Systems, Inc.

From simon Tue Mar 21 13:22:32 1989
To: greid@adobe.com
Subject: Problem in PostScript

Dear Mr. Reid

I have got a problem in understanding the
PostScript policy in determining “what is in
the clipping path”. I think there is a problem
in the boundaries. Here is an example that
shows that problem:

gsave
initclip
newpath

0 0 moveto

0 1000 lineto
1000 1000 lineto
1000 0 lineto

0 0 lineto

300
700
700
300

100
100
300
300

moveto
lineto
lineto
lineto

