
On the Logical Structure of Mathematical Notation

Dennis S. Arnon
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304 USA
415-494-4425; FAX: 415-494-4241
arnonQparc.xerox.com

Sandra A. Mamrak
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210 USA
614-292-2770; FAX: 614-292-9021
mamrakQcis. ohio-state .edu

Abstract

We show how the logical structures of a realistic class of mathe-

matical formulae can be recovered from Plain source repre-

sentations, using the Centaur system, a tool for Language-Based

Environments.

Introduction

A major current trend in structured document rep-

resentation and processing is to distinguish the log-

ical and layout structures of (the instances of) a

given family of documents. Both ODA (Office Doc-

ument Architecture) and SGML (Standard General-

ized Markup Language) [3] offer tools, much akin to

context-free grammars, for specifying either or both

of these structures for a document class ("document

type") of interest.

In general, we may say that document logi-

cal structure expresses the author's (and hopefully

the reader's) organization of the material being pre-

sented, independently of how the words, formulae,

and illustrations of the work are actually to be

turned into marks on paper or screen. Document

layout structure expresses how primitive "glyphs"

(font characters, illustrations, images) are posi-

tioned and juxtaposed on display surfaces, and how

a hierarchy of groupings of them (e.g., "paragraph

blocks," "pages") can be identified. Both structures

are usually thought of as trees, possibly with cross-

links between nodes.

These general remarks specialize well to math-

ematical formulae, i.e., to mathematical notation.

The author and reader of a technical document think

about a formula in terms of its logical structure.

Communication between them is achieved via a rep-

resentation of the formula as a layout structure; this

of course must be imaged (printed, displayed) for it

to actually play its communicative role.

The logical structure of formulae is also the ba-

sis for computational applications, such as symbolic

mathematical computation, that operate on their

meanings, i.e., that manipulate (effective represen-

tations of) the objects deno t ed by the formulae. For

example, a program to symbolically invert a ma-

trix of polynomials would typically require a logi-

cal structure representation of the matrix, and not

a layout representation. Beyond computation, the

majority of information-retrieval applications one

might imagine for a database of mathematical for-

mulae (such as an online table of integrals) would

use logical structure.

The high-quality mathematical typesetting

that has been brought about by systems such as

has whetted the appetites of computational

mathematicians for WYSIWYG symbolic computa-

tion, also sometimes called "direct manipulation,"

that provides the ability to interact directly with

the pleasant-to-look-at (imaged) layout structures

of formulae as they appear on the screen. The catch

is that the manipulations that are desired require

logical structures. And while it is now straightfor-

ward to generate layout from logical structure, going

in the reverse direction is generally hard.

Building on these observations, signficant ef-

fort has been devoted recently to building WYSIWYG

symbolic math systems in which logical structures of

formulae are always held as the primary representa-

tion: Layout structures are generated when needed,

TUGboat, Volume 12 (1991). No. 4-Proceedings of the 1991 Annual Meeting

Dennis S. Arnon and Sandra A. Mamrak

and links back to the logical structure are then main-

tained to enable desired subunits of logical structure

to be inferred from (visible) selections of subunits of

layout structure. (See, for example, [4] and [I].)

Nonetheless, there are numerous situations in

which one starts without a logical structure repre-

sentation of a formula of interest, and would like

to obtain one. In this paper we shall suppose that

we begin with a Plain representation of a for-

mula from a simple class of combinations of elemen-

tary functions and integrals. We then show that by

using contemporary tools of Language-Based Envi-

ronments we can do a reasonable job of recovering

logical structure from TEX.
In the next section, we briefly discuss the Cen-

taur system for Based Environments, which we have

used. Then we specify the concrete syntax of

that we parse, and the abstract syntax (logical struc-

ture) we translate it into. We mention the restric-

tions we are forced to impose on the TFJ syntax

we can accept. Finally we show some examples. It

should be clear that the logical structures we obtain

are suitable, with minor transliteration, for input to

such symbolic computation systems as Mathemat-

ica or Maple. We hope it will also be clear that

we could also "unparse" our logical structures into

SGML, EQN, or virtually any other concrete syntax

for the logical structure of mathematical notation.

Centaur

Centaur [2] is a meta-tool for the generation of

language-based environments. From a grammati-

cal specification of a (context-free) language and

executable specifications of its formal semantics,

parsers, type checkers, and interpreters for it can be

automatically generated. Centaur is written in Lisp

and Prolog and usually runs under X-Windows.

In the next section we shall see a grammar for

our class of formulae. Nonterminals in the concrete

syntax rules are enclosed in angle brackets. Literal

strings to match in the input stream are enclosed in

double quotes. Underneath each rule is a specifica-

tion of the portion of abstract syntax tree that gets

built when that rule is recognized. The last part

of the grammar defines the "signatures" of the ab-

stract syntax tree, i.e., what arities they have and

what "phyla" (L'sorts," "types") their children must

have. Finally the phyla themselves are given; each

is simply a set of abstract syntax operators.

Grammar for a Class of Formulae

The appendix shows the grammar for each of the

example expressions. Here are some properties to
note:

480 TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

1. Variables are restricted to single letters; in-

teger constants are restricted to single digits.

2. Non-character integrands must be single

chars or 'l&X subformulae, i.e., enclosed in braces.

Also, the args of special functions (currently sin. cos,

log, exp, prime) must be characters or subformulae.

These requirements simplify the grammar and pars-

ing.

3. Multiplication is denoted by asterisk. This

avoids three shiftlreduce conflicts from yacc.

4. All integrals are represented by instances

of a single abstract syntax operator. Formatting

routines need to handle this appropriately (e.g., not

print the .'dn for a null (defaulted) variable of inte-

gration).

5. We assume that prime of an expression

means derivative with respect to its main variable,

and that there is some clear way to know what the

main variable is (e.g., the expression has only one

variable). It is the user's job to enclose the argu-

ment of prime in parentheses to prevent ambiguity.

Similarly the args of sin and cos must be in paren-

theses.

6. Exponential function must be done as exp,

not. e to the x.

Examples

The following are examples of expressions accepted

by our concrete grammar.

On the Logical Structure of Mathematical Notation

References

J
exp -a2 + exp x3

dx
sin x2 + cos x2

J sin log xdx

(1 sin log xdx):),

(
-(x * cos (log (x))) x * sin (log (x))

2
+

2 1'

Figure 1 shows the abstract syntax tree for the last

expression.

i n t e g r a l (

quot ien t (

i n t e g r a l (

quot ien t (

[I] D. Arnon, R. Beach, K. McIsaac, and C. Wald-

spurger. Caminoreal: an interactive mathemati-

cal notebook. In Proc. Intl. Conf. on Electronic

Publishing, Document Manipulation, and Typog-

raphy, pages 1-18. Cambridge University Press,

April 20-22 1988. (J.C. van Vliet, ed.) ISBN O-

521-36294-6.

[2] P. Borras et. al. Centaur: the system. In Proceed-

ings of the SIGSOFT'88, Third Annual Sym-

posium on Soflware Development Environments,

1988. Boston, Massachusetts.

[3] Information Processing-Text and Ofice Systems-

Standard Generalized Markup Language (SGML),

October 1986. IS0 8879-1986 (E).

[4] Neil Soiffer. The design of a user interface for

computer algebra systems. Technical Report

UCB/CSD 911626, Computer Science Division

(EECS), University of California, Berkeley, April

1991.

References

[I] D. Arnon, R. Beach. K. McIsaac, and C. Wald-

spurger. Caminoreal: An interactive mathemat-

ical notebook. In Proceedings of the Interna-

tional Conference on Electronic Publishing, Doc-

ument Manipulation, and Typography, pages 1 -

18. Cambridge University Press, April 20 - 22.

1988. (J.C. van Vliet. ed.) ISBN 0-521-36294-6.

[2] P. Borras et. al. Centaur: The system. In

Proceedings of the SIGSOFT'88, Third Annual

Symposium on Software Development Environ-

ments, 1988. Boston, Massachusetts.

[3] Information Processing - Text and Ofice Sys-

tems - Standard Generalized Markup Language

(SGML), October 1986. IS0 8879-1986 (E).

[4] Neil Soiffer. The design of a user interface for

computer algebra systems. Technical Report

UCB/CSD 911626, Computer Science Division

(EECS), University of California, Berkeley, April

1991.

Figure 1: Abstract syntax tree

TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Dennis S. Arnon and Sandra A. Mamrak

Appendix

definition of texMath is

rules

<markedTexExpr> : : = "$$" <texExpr> "$$" ;

<texExpr>

482 TUGboat, Volume 1 2 (1991), No. 4-Proceedings of the 1991 Annual Meeting

On the Logical Structure of Mathematical Notation

<texFactor> : : = <texFactor> "*" <texPower> ;

t imes (<texFactor>, <texPower>)

<texTerm> : : = " \ s q r t M <bracedTexExprOrChar> ;

s q r t (<bracedTexExprOrChar>)

<texTerm> : := <bracedTexExprOrChar> "\prime" ;

d e r i v a t i v e (<bracedTexExprOrChar>)

TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

Dennis S. Arnon and Sandra A. Mamrak

<name> : := %LETTER ;

name-atom (%LETTER)

<digit> : := %DIGIT ;

digit-atom (%DIGIT)

<null-name> : := ;

null-inst 0

<null-limit> : := ;

null-inst 0

abstract syntax

integral -> EXP NAME EXP EXP;

quotient -> EXP EXP ;

power -> EXP EXP ;

sum -> EXP EXP ;

difference -> EXP EXP ;

times -> EXP EXP ;

negate -> EXP ;

sin -> EXP ;
cos -> EXP ;
log -> EXP ;
exp -> EXP ;
sqrt -> EXP ;

derivative -> EXP ;

name -> implemented as IDENTIFIER ;

digit -> implemented as STRING ;

null-inst -> implemented as SINGLETON ;

EXP : := integral quotient power sum difference times negate sin cos log

exp sqrt derivative NAME digit null-inst ;

NAME : : = name ;

end definition

TUGboat, Volume 12 (1991), No. 4-Proceedings of the 1991 Annual Meeting

