
TUGboat, Volume 14 (1993), No. 1

--- -

FIFO and LIFO sing the BLUes*

Kees van der Laan

Abstract

FIFO, First-In-First-Out. and LIFO, Last-In-First-

Out, are well-known techniques for handling se-

quences. In TJ$ macro writing they are abundant

but are not easily recognized as such. TJ$ tem-

plates for FIFO and LIFO are given and their use

illustrated. The relation with Knuth's \dolist,
answer ex11.5, and \ctest. p.376, is given.

Keywords

FIFO, LIFO, list processing, plain m. education.

macro writing.

Introduction

It started with the programming of the Tower of

Hanoi in m. van der Laan (1992a). For print-

ing each tower the general FIFO-First-In-First-

Out1 -approach was considered.' In literature

(and courseware) the programming of these kind of

things is done differently by each author, inhibiting

intelligibility. In pursuit of Wirth (1976), rn
templates for the FIFO (and LIFO) paradigm will
hopefully improve the situation.

In this article we will see various slightly differ-

ent implementations of the basic FIFO principle.

FIFO

In the sequel, I will restrict the meaning of FIFO to
an input stream which is processed argument-wise.

FIFO can be programmed in as template

\def\fifo#l{\ifx\ofif#l\ofif\fi

\process#l\fifo}

\def\ofif#l\fifo{\fi)

The \f if o command calls a macro \process that

handles the individual arguments. Often you can

copy \f if o straight out of this article, but you have

to write a version of \process that is specific to
your application.

To get t he flavor.

* Earlier versions appeared in MAPS92.1 and

proceedings E u r o m '92. BLU is Ben Lee User of

W b o o k fame. It makes the title sing, I hope.

See Knuth (1968), section 2.2.1.

' In the Tower of Hanoi article Knuth's list

datastructure was finally used - The w b o o k , Ap-
pendix D.2 -with FIFO inherent.

Length of string. An alternative to Knuth's

macro \getlength (The m b o o k , p.219) is ob-

tained via the use of \f if o with

\newcount\length

\def\process#1{\advance\lengthl 3

Then \f if o aap noot\of if \number\length

yields the length 7.3

Number of asterisks. An alternative to

Knuth's \atest (The m b o o k , p.375), for de-

termining the number of asterisks, is obtained via

\f if o with

\def\process#1{\if*#l\advance\acnt by1

\f i)
\newcount\acnt

Then \f if o abc*de*\of if \number\acnt yields

the number of asterisks:
Vertical printing. David Salomon treats the

problem of vertical printing in his courseware. Via

an appropriate definition of \process and a suitable
invocation of \f if o it is easily obtained.

\def\process#l{\hbox{#l}}

\vbox{\offinterlineskip\fifo abc\ofif)

yields 6 .
Tower of Hanoi. Printing of a tower & can

be done via

\def \process#l{\hbox to3ex(%

\hss\vrule width#lex heightlex\hss))

\vbox{\baselineskipl.lex\fifol2\ofif)

Termination. For the termination of the tail

recursion the same m n i q u e as given in The

w b o o k , p.379, in the macro \deleterightmost,
is used. This is elaborated as \break in Fine (1992),

in relation to termination of the loop. The idea is

that when \of if is encountered in the input stream,

that is, when \ifx\of if#l.. . is true, all tokens in

the macro up t o and including \f ifo -the start

for the next level of recursion-are gobbled by a

subsequent call to \of if .5 Because the matching

\fi is gobbled too, this token is inserted via the

replacement text of \of if. This m n i q u e is

better than Kabelschacht's (1987), where the token

Insert \obeyspaces when the spaces should be

counted as well.

As the reader should realize, this works cor-

rectly when there are first level asterisks only. For

counting at all levels automatically, a more general

approach is needed, see Knuth's \ctest, p.376.

In contrast with usual programming of recur-

sion start with the infinite loop, and then insert the

\if . . . \ofif\fi.

TUGboat, Volume 14 (1993), No. 1 55

preceding the \fi is expanded after the \f i via

the use of \expandafter. When this is applied

the exchange occurs at each level in the recursion.

It is also better than the \let\nxt=. . . W n i q u e ,

which is used in The m b o o k , for example in

\iterate, p.219, because there are no assignments.
My first version had the two tokens after

\ifx reversed-a cow flew by -and made me

realize the non-commutativity of the first level

arguments of w ' s conditionals. For exam-

ple, \if x aa\empty . . . differs from \if x\empty
aa. . . , and \if \ab\aa. . . from \if \aa\ab. . . ,
with \def \aa{aa), \def \ab{ab). In math, and

in programming languages like Pascal, the equality

relation is commutative16 and no such thing as

expansion comes in between. When you are not

alert with respect to expansion, m ' s \if-s can

surprise you.
The \f if o macro is a basic one. It allows one

to proceed along a list-at least conceptually-

and to apply a (user) specified process to each list

element. By this approach the programming of

going through a list is separated from the various

processes t o be applied to the element^.^ It adheres

to the separatzon of concerns principle, which I

consider fundamental.
The input stream is processed argument-wise,

with the consequence that first level braces will be

gobbled. Beware! Furthermore, no outer control

sequences are allowed, nor \par-s. The latter can

be permitted via the use of \long\def.

A general approach - relieved from the restric-
tions on the input stream: every token is processed

until \of if -is given in The m b o o k , answer

ex11.5 (\dolist.. .) and on p.376 (\ctest.. .).
After adaptation to the \f if o notation and to the

use of macros instead of token variables, Knuth's
\dolist comes down to

\def \f if oC\afterassignment\tap

\let\nxt= 3
\def\tap{\ifx\nxt\ofif\ofif\fi\process

\nxt\f if 0)

\def\ofif#i\fifo{\fi)

This general approach is indispensable for macro

writers. My less general approach can do a lot

already, for particular applications, as will be shown
below. But, . . . beware of its limitations.

Variations. The above \f if o can be seen as

a template for encoding tail recursion in w, with

arguments taken from the input stream one after

another. An extension is to take two arguments

from the input stream at a time, with the second

argument to look ahead, via

\def\fifo#l#2{\process#l\ifx\ofif#2

\of if \f i\f if o#2)

\def\ofif#l\ofif{\fi)

Note the systematics in the use of the parameter

separator in \of if; here \of if and in the previous

macro \f ifo, the last token of the replacement

text. Although the principle of looking ahead with

recursion is abundant in computer programming, a

small example to illustrate its use is borrowed from
Salomon: delete last character of argument. It is

related to \deleterightmost (The QXbookp.379).

Effective is the following, where a second parameter

for \fifo is introduced to look ahead, which is

inserted back when starting the next recursion level

\def \gobblelast#l{\f if o#l\of if)

\def \f if o#l#2{\if x\of if #2\of if \f i%

#l\f if o#2)

\def\ofif#l\ofif{\fi)

Then \gobblelast{aap) will yield aa.

And what about recursion without parameters? A
nice example of that is a variant implementation

of Knuth's \iterate of the \loop (The m b o o k ,

p.219).

\def\iterate{\body\else\etareti\fi%

\iterate)

\def\etareti#l\iterate{\fi)

This \iterate contains only 5 tokens in contrast
with Knuth's 11. The efficiency and the needed

memory is determined by the number of tokens

in \body, and therefore this 5 vs. 11 is not rele-

vant. The idea behind including this variant here is

that the FIFO principle can lead to simple encod-
ing of tail recursion even when no arguments are

processed.

Variable number of parameters. w macros

can take at most 9 parameters. The above \f if o

macro can be seen as a macro which is relieved from

that restriction. Every group, or admissible token,

in the input stream after \f if o up to and including

\of if, will become an argument to the macro.

SO are w ' s \if-s after expansion.

If a list has to be created, Knuth's list data-

structure might be used, however, simplifying the

execution of the list. See The QXbook, Appendix
D.2.

TUGboat, Volume 14 (1993), No. 1

When the \of if token is reached, the recursion-

that is reading of arguments-will be terminated.8

Unknown number of arguments. Tutelaers

(1992), as mentioned by Eijkhout (1991), faced

the problem of inputting a chess position. The

problem is characterized by an unspecified number

of positions of pieces, with for the pawn positions

the identification of the pawn generally omitted. Let

us denote the pieces by the capital letters K(ing),

Q(ueen), B(ishop), (k)N(ight), R(ook), and P(awn),
with the latter symbol default. The position on the

board is indicated by a letter a. b. c, or h.

followed by a number, 1, 2, . . . , or 8. Then, for

example,

\position(Kel, qdl, Nal, e2, e4)

should entail the invocations

\piece{K)(el)\pieceC9)idl)\piece~N>~al)

\pieceCP)Ce2)\pieceCP)(e43

This can be done by an appropriate definition
of \position, and an adaptation of the \f ifo

template. via

\def \position#l{\f if o#l ,\of if,)

\def \f if o#l ,(\if x\of if #l\of if

\fi\process#l\relax\fifo)

\def\ofif#l\fifo(\fi)

\def\process#1#2#3{\ifx\relax#3

\pieceCP)(#l#2)\else\piece#1{#2#3)\f i)

With the following definition (simplified in relation

to Tutelaers)

\def\piece#l#2(#1-#2)

we get K-el Q-dl N-a1 P-e2 P-e4.
For an unknown number of arguments at two

levels see the Nested FIFO section.

Ci ta t ion lists. In a list of citations it is a good

habit to typeset three or more consecutive numbers

as a range. For example 1 ,2 ,3 as 1-3. This must be

done via macros when the numbers are represented
by symbolic names, which get their value on the

fly. In general the sequence must be sortedg before
typesetting. This has been elaborated by Arseneau

Another way to circumvent the 9 parameters

limitation is to associate names to the quantities

to be used as arguments, let us say via def's,

and to use these quantities via their names in

the macro. This is Knuth's parameter mechanism

and ism functionally related to the so-called keyword

parameter mechanism of command languages, and

for example ADA.
The sorting of short sequences within !!&X has

been elaborated by Jeffreys 1990, and myself in
Syntactic Sugar.

(1992) in a few L A W styles, and for plain

by myself. I used the FIFO paradigm in the

trivial, stepping-stone, variant of typesetting an

explicit non-descending sequence in range notation.

The resulting 'process'-macro could be used in the

general case, once I realized that FISO-First-In-

Smallest-Out-was logically related to FIFO: the

required elements are yielded one after the other,

whether the first, the last, the smallest, or . . .you
name it. Perhaps this is a nice exercise for the

reader. For a solution see van der Laan (1993).

Vowels, voil8. Schwarz (1987) coined the problem
to print vowels in bold face.1° The problem can

be split into two parts. First, the general part of

going character by character through a string, and

second, decide whether the character at hand is a
vowel or not.

For the first part use \f ifo (or Knuth's

\dolist).

For the second part, combine the vowels into

a string, aeiou, and the problem can be reduced
to the question (char) E aeiou? Earlier, I used

this approach in searching a card in a bridge hand,

van der Laan (1990, the macro \strip). That was

well-hidden under several piles of cards, I presume?

The following encoding is related to \ismember

(The m b o o k , p.379).

\newif \iff ound

\def\loc#l#2(%locate #I in #2

\def \locate##l#l##2\end(\if x\empty##2%

\empty\foundfalse\else\foundtrue\fi)%

\locate#2#l\end)

Then \f if o Audacious\of if yields Audacious,
with

\def\process#l(\uppercase{\loc#l~%

~AEIOU~\iffound(\bf#l~\else#l\fi~

Variation. If in the invocation \locate#2#1

a free symbol is inserted between #2 and #I, then

\loc can be used to locate substrings." And be-

cause {string' E string2) A {string2 E string') +
stringl = stringz, the variant can be used for the
equality test for strings. See also the Multiple

FIFO subsection, for general and more effective

alternatives for equality tests of strings.

His solution mixes up the picking up of list

elements and the process to be applied. Moreover,

his nesting of \if-s in order to determine whether

a character is a vowel or not, is not elegant. Fine

(1992)'s solution, via a switch, is not elegant either.

l1 Think of finding 'bb' in lab' for example, which

goes wrong without the extra symbol.

TUGboat, Volume 14 (1993), No. 1 5 7

Process ing lines. What about processing lines of \hbox{\vrule\phantom#l\vrule)\hrule)))

text? In official, judicial, documents it is a habit

to fill out lines of text with dots.12 This can be
solved by making the end-of-line character active,

with the function to fill up the line. A general
approach where we can \process the line, and not

only append to it, can be based upon \f if o.

One can wonder, whether the purpose can't

be better attained, while using w as formatter,

by filling up the last line of paragraphs by dots,
because justifies with paragraphs as units.

P rocess ing words. What about handling a list

of words? This can be achieved by modifying the

\f if o template into a version which picks up words.

\f if ow, and to give \processw an appropriate
function.

\def\fifow#l {\ifx\wofif#l\wofif\fi

\processwC#l)\ \f if ow)

\def \wof if #l\f if ow{\f i)

Under l in ing words . In print it is uncommon

to emphasize words by underlining. Generally
another font is used: see discussion of exercise 18.26

in The m b o o k . However. now and then people

ask for (poor man's) underlining of words. The
following \processw definition underlines words

picked up by \f if ow

\def \processw#l~\vtop{\hbox{\strut#l)

\hrule))

Then

\leavevmode\fifow leentje leerde lotje

lopen l a g s de lange lindenlaan \wofif

\unskip.

yields leentje leerde lotje lopen langs de lange - - - - - - -
lindenlaan.

Nes t ed FIFO

One can nest the FIFO paradigm. For processing
lines word by word, or words character by character.

W o r d s c h a r a c t e r by character . Ex11.5 can be

solved by processing words character by character.

A solution t o a slightly simplified version of the
exercise reads

\fifow Though exercise \wofif \unskip.

%with

\def\processw#lC\fifo#l\ofif)

\def \process#l{\boxit#l)

\def \boxit#1~\setboxO=\hboxC#i)\hbox

~\lower\dpO\vbox~\of f interlineskip\hrule

l2 The problem was posed at E u r o m ' 9 1 by
Theo Jurriens.

yields Ukdl rrrrriFn.

In the spirit of \dolist. . . , ex11.5, is

%variant neglecting word structure

\def\fifo{\afterassignment\tap

\let\nxt= 3
\def \tap{\if x\nxt\of if \of if

\fi\process\nxt\fifo)

\def\ofif#l\fifo{\fi)

\def\process#l{\if\space\nxt\

\else\boxit#l\fi)

\fifo Though exercise\ofif.

with the same result m.

M a r k up na tu r a l da t a . Data for \h(v)align

needs & and \cr marks. We can get plain Tf$
to append a \cr at each (natural) input line (The
W b o o k , p.249). An extension of this is to get

plain Tf$ to insert \cs-s, column separators, and

\rs-s, row separators, and eventually to add \lr,

last row, a t the end, in natural data. For example
prior to an invocation of \halign, one wants to get

plain T)jX to do the transformation

P*ON * P\cs*\csO\csN\rsD\csE\csK\cs*\lr
DEK*

This can be done via

$$\vcenter{\hbox{P*ON)\kern.5ex

\hbox{DEK*)) \,\Rightarrow\,

%And now right, mark up part

\bdata P*ON

DEK*

\edat a\markup\dat a

\vcenter{\hbox{\data))$$

with

\def\bdata{\bgroup\obeylines\store)

\def\store#l\edata{\egroup\def\data{#l))

\def\markup#i{\ea\xdef\ea#l\ea{\ea

\fifol#l\lofif))

and auxiliaries

\let \nx=\noexpand

{\catcode'\--M=13

\gdef\fifol#l~~M#2{\fifo#l\ofif%

\ifx\lofif#2\nx\lr\lofif

\fi\nx\rs\fifol#2))

\def\lofif#l\lofif{\fi)

\def\fifo#1#2{#l\ifx\ofif#2\ofif

\fi\nx\cs\fifo#2)

\def\ofif#l\ofif{\fi)

%with for this example

\def\cs{{\sevenrm~\tt\char92)cs))

\def\rs{{\sevenrm{\tt\char92)rs})

58 TUGboat, Volume 14 (1993), No. 1

\def\lr({\sevenrm{\tt\char92)1r))

The above came to mind when typesetting cross-

words,13 van der Laan (1992b,-d),14 while striving

after the possibility to allow natural input, inde-

pendent of \halip processing.

Multiple FIFO

What about FIFO for more than one stream?'' For

example comparing strings, either for equality or

with respect to lexicographic ordering? Eijkhout

(1992, p. 137, 138) provided for these applications
the macros
\ifAllChars . . . \Are . . . \Thesame,
and

\if allchars. . .\are. . . \bf ore.
The encodings are focused at mouth processing.
The latter contains many \expandaf ter-s.

A basic approach is: loop through the strings

character by character, and compare the characters
until either the assumed condition is no longer true,

or the end of either one of the strings, has been

reached.

Equality of strings. The 'l$,X-specific encoding,

where use has been made of the property of \ifx

for control sequences, reads

\def\eq#1#2{\def\st{#l)\def\ndC#2)

\if x\st\nd\eqtrue\else\eqf alse\f i)

with auxiliary \newif \if eq.

As a stepping stone for lexicographic compari-

son, consider the general encoding

\def\eq#1#2{\continuetrue\eqtrue

\loop\ifx#l\empty\continuefalse\fi

\ifx#2\empty\continuefalse\fi

\ifcontinue \nxte#l\nxtt \nxte#2\nxtu

\if x\nxtt\nxtu

\else\eqfalse\continuefalse\fi

\repeat

\ifx\empty#l\ifx\empty#2

\else\eqfalse\fi\else\eqfalse\fi)

with auxiliaries

\newif\ifcontinue\newif\ifeq

\def\nxte#l#2{\def\pop##l##2\pop{%

\gdef#1~##2)\gdef#2{##l~~\ea\pop#l\popl

Then

l3 With *, or ,, given an appropriate function.

l4 In the latter article I set the puzzles via direct

use of nested FIFO. No \halip use nor mark up
phase.

l5 For simplicity the streams are stored in def-s,
because \read inputs lines.

\def\t{abc)\def\u{ab)

\eq\t\u\if eq$abc=ab$\else$abc\not=ab$\f i

yields abc#ab.

Lexicographic comparison. Assume that we

deal with lower case and upper case letters only.

The encoding of \sle-String Less or Equal-

follows the same flow as the equality test, \eq,
but differs in the test, because of m ' s expansion

mechanisms

\def\sle#1#2(%#1, #2 are def's

\global\sletrue\global\eqtrue

{\continuetrue

\loop\ifx#1\empty\continuefalse\fi

\if x#2\empty\cont inuef alse\f i

\ifcontinue\nxte#l\nxtt\nxte#2\nxtu

\ea\ea\ea\lle\ea\nxtt\nxtu

\repeat)

\ifeq\ifx\empty#2\ifx\empty#l

\else\global\slefalse\fi\fi

\f i)

with auxiliaries (\lle=Letter Less or Equal)

\newif\ifcontinue

\global\newif\ifsle\global\newif\ifeq

\def\nxte#l#2{\def\pop##l##2\pop{%

\xdef#1{##2)\xdef#2{##l))\ea\pop#l\pop)

\def\lle#l#2~\upperca~e{\ifnum~#1=~#2)

\else\continuefalse\global\eqfalse

\upperca~e{\ifnurn'#1>~#2){)\global

\slefalse\fi

\f i)

For example

\def\t(ABC)\def\u(ab)\sle\t\u

\ifsle$ABC\le ab$\else$ABC>ab$\fi

yields ABC > ab;

\def\tCaa)\def\u{a)\sle\t\u

\if sle$aa\le a$\else$aa>a$\f i

yields aa > a;

\def\t{aa)\def\u{b)\sle\t\u

\ifsle$aa\le b$\else$aa>b$\fi

yields aa 5 b;

\def\t(noo)\def\u{apen)\sle\t\u

\if sle$noo(apen£ "else£noo)apen$\f i

yields no0 > apen.
The above can be elaborated with respect

to \read for strings each on a separate file, to

strings with accented letters, to the inclusion of an
ordering table, and in general to sorting. Some of

the mentioned items will be treated in Sorting in
BLUe, to come.

TUGboat, Volume 14 (1993), No. 1 59

LIFO

A modification of the \f i f o macro- \processC#l}

invoked at the end instead of at the beginning-

will yield the Last-In-First-Out template. Of course

LIFO can be applied to reversion on the fly, without

explicitly allocating auxiliary storage.16

\def\lifo#l#2\ofil{\ifx\empty#2

\empty\of i l \ f i \ l i f o#2\of i l \p rocess# l}

\def \of i l # l \ o f i l{ \ f i)

The test for emptyness of the second argument

is similar to the W n i q u e used by Knuth in

\ d i sp l ay t e s t (The W b o o k , p.376): \ i f !#3!
With the identity - \def \process#l(#l3, or

the invoke \process#i replaced by #117 -the tem-

plate can be used for reversion on the fly For

example \ l i f o aap\of il yields paa.18

Change of radix. In The m b o o k a LIFO ex-

ercise is provided at p.219: print the digits of a

number in radix 16 representation. The encodingis

based upon the property

(~ + r ~) m o d r = d k , k = O , l , . . . , n.

with radix r, coefficients dk, and the number

representation
n

k=O

There are two ways of generating the numbers dk:

starting with d,, or the simpler one starting with
do, with the disadvantage that the numbers are

generated in reverse order with respect to printing.

The latter approach is given in The w b o o k , p.219.

Adaptation of the LIFO template does not provide

a solution much different from Knuth's. because

l6 Johannes Braams drew my attention to Knuth

and MacKay (1987), which contained among oth-
ers \ r e f l e c t . . . \ t c e l f e r . They compare # I with

\empty, which is nice. The invocation needs an ex-

t ra token, \empty-a so-called sentinel, see Wirth

(1976) - to be included before \ t c e l f e r , however.

(Knuth and Mackay hide this by another macro

which invokes \ r e f l e c t . . . \empty\tcelf e r) . My
approach requires at least one argument, with the
consequence that the empty case must be treated

separately, or a sentinel must be appended after all.

the numbers to be typeset are generated in the

recursion and not available in the input stream.

Acknowledgements

Wlodek Bzyl and Nelson Beebe are kindly acknowl-

edged for their help in clearing up the contents and

correcting my use of English, respectively.

Conclusion

In looking for a fundamental approach t o process

elements sequentially - not to confuse with list

processing where the list is also built up, see The

W b o o k , Appendix D.2, or with processing of every
token in the input stream, see ex11.5 or p.376-

templates for FIFO and LIFO emerged.

The templates can be used for processing lines,

words or characters. Also processing of words line

by line, or characters word by word, can be handled
via nested use of the FIFO principle.

The FIFO principle along with the look ahead

mechanism is applied to molding natural data

into representations required by subsequent rn
processing.

Courseware might benefit from the FIFO ap-

proach to unify answers of the exercises of the
macro chapter.

TQX's \ i f x . . . and \ i f . . . conditionals are

non-commutative with respect to their first level

operands, while the similar mathematical operations
are, as are the operations in current high-level

programming languages.

Multiple FIFO, by comparing strings lexico-

graphically, has been touched upon.

References

Arseneau, D. (1992): overcite.sty, drftcite.sty.

citesty. From the file server.
Eijkhout. V. (1991): by Topic. Addison-

Wesley.

Fine, J. (1992): Some basic control macros for

7QjX, TUGboat 13, no. 1, 75-83.
Hendrickson, A. (priv. comm.)

Jeffrey, A (1990): Lists in m ' s mouth. TUG-

boat 11, no. 2, 237-244.

Kabelschacht, A. (1987) : \expandaf t e r vs. . .
\ l e t and \def in conditionals and a gener-

l7 Remember the stack size limitations. alization of plain's \loop. TUGboat 8, no. 2,
Is Note tha t Knuth's test \ i f ! #3! . . . goes wrong 184-185.

for #3 equals ! , and similarly my use of the idea [7] Knuth, D.E. (1968): The Art of Computer Pro-
goes wrong for #2 equals \empty, which is not gramming. 1. Fundamental Algorithms. Addison-
'empty'. Given the context those situations don't Wesley.
occur, however.

TUGboat, Volume 14 (1993), No. 1

ison- Knuth, D.E. (1984): The =book. Add'

Wesley.
Knuth, D.E., P. Mackay (1987): Mixing right-

to-left texts with left-to-right texts. TUG-

boat 7. no. 1, 14-25.

Laan, C.G. van der (1990): Typesetting Bridge

via w, TUGboat 11, no. 2, 91-94. Also
MAPS91.2, 51-62.

Laan, C.G. van der (1992a): Tower of Hanoi,
revisited. TUGboat 13, no. 1, 91-94. Also

MAPS92.1, 125-127.

Laan, C.G. van der (1992b): Typesetting Cross-
words via =. E u r o W 1 9 2 , 217-224. Also

MAPS92.1, 128-131.

Laan, C.G. van der (1992~): Table Diversions.
E u r o m '92, 191-211. Also a little adapted in

MAPS92.2, 115-128.

Laan, C.G. van der (1992d): Typesetting Cross-
words via =, revisited. MAPS92.2, 145-146.

Laan, C.G. van der (1992e): Syntactic Sugar.

MAPS92.2, 130-136. (Submitted TUG'93.)

Laan, C.G. van der (1993): Typesetting number
sequences. MAPS93.1. 4p.

Laan, C.G. van der (in progress): Sorting

in BLUe. MAPS93.1. (Submitted TUG'93.

For heap sort encoding in plain 1'E;71, see

MAPS92.2, 137-138.)
[18] Salomon, D. (1992): Advanced rn course:

Insights & Hindsights, MAPS 92 Special. 254p.
[19] Schwarz, N. (1987): Einfiihrung in 1'E;71, Addison-

Wesley.
[20] Tutelaers, P. (1992): A font and a style for type-

setting chess using LAW or W. TUGboat 13.

no. 1, 85-90.
[21] Wirth, N. (1976): Algorithms + Data Struc-

tures = Programs. Prentice-Hall.

o Kees van der Laan
Hunzeweg 57, 9893PB
Garnwerd (Gr), The Netherlands
cglQrug.nl

An Update on the babel System

Johannes Braams

Abstract

This article describes the changes that have been

made to the babel system since the article describing
the system appeared in TUGboat 12, no. 2. This

article announces the release of a new version of the
babel system.

1 Introduction

Since the publication of the babel system in TUG-
boat [l] several changes have occurred. With the

new release of LAW--which appeared at the end

of 1991 -the internationalised version ILAW, pre-

pared by Joachim Schrod [2], was withdrawn. But
some of its functionality was still needed, so a mod-

ification of the babel system was necessary.

Besides this a couple of bugs were reported and
had t o be fixed. The major problem was that the
language changing commands were not 'local', they

contained global definitions. In the current version

these commands obey grouping correctly.

Some macros that formerly were in language-
specific files have been moved to the core of the

system, because they are being used in several

language-specific files.

2 Changes to the core of babel

The changes to the core of the babel system are the

most extensive.

\selectlanguage

The babel user-command \selectlanguage now

also accepts a control sequence as its argument. This

was included to provide compatibility for users who

were used to the syntax of the original german. tex,

but wanted to switch t o babel. The escape character

is 'peeled off' and the name of the control sequence
is then used as the name of the language to select.

Another change t o the \ s e l e c t language macro

is that it now stores the name of the current lan-

guage in the control sequence \languagename. The

