
TEXtensions

Editing .dvi Files, or Visual TEX

Jonathan Fine

Abstract

This note outlines the speci�cation of a TEX format,
that will allow the resulting .dvi �le to be edited
via a suitable previewer and a .dvi �le editor. Such
close linking of editing and typesetting appears to
be within the present capabilities of TEX.

Value Added Typesetting

Typesetting can be thought of as a process which
adds value to the document being processed. This
may not be true for works typeset from the author's
original manuscript and corrected proofs, for such
physical documents reveal change of mind, history
of composition and other details which are lost in
the printed version of the document. But here we
consider the typesetting of, say, a suitably tagged
ASCII �le.

Throughout this document we will use the
language and conventions of TEX, but most of the
issues involved are of a more general nature, and
apply to any computer typesetting system.

Suppose throughout that myfile.tex is typeset
to produce myfile.dvi. If the latter �le is the
former, together with some added value, then it
should be possible to recover the former from
the latter. Oddly enough, a recent posting to
an electronic discussion list raised precisely this
problem. An author had in error deleted the
original .tex �le, and wished to recover its content,
as best as was possible, from the .dvi �le. This
then is the de�nition of value added typesetting|
from the typeset �le it must be possible to extract
the source �le.

Poppelier (1991) also contains a discussion of
the process by which typesetting adds value to the
document, but from a di�erent point of view.

Specials

TEX has a process by which special instructions can
be transmitted to printing devices (The TEXbook,
page 226), and that is the \special mechanism.
Each \special that makes it to the .dvi �le
will produce in it a string of characters, attached
to some speci�c location on the page. These

TUGboat, Volume 17 (1996), No. 3 255

characters are not usually intended to be printed
on the page, rather their purpose is to control the
printing process in some way.

This mechanism can be used to embed some
text into the .dvi �le, but one should (The
TEXbook, page 228) \be careful not to make the
list [of characters, i.e., the text] too long, or you
might over
ow TEX's string memory." The author
does not know if this will be a danger for the
constructions about to be described. Using emTEX
he has created a .dvi �le with 500,000 di�erent
specials, whose content is the numbers from 1 to
500,000, as digit strings.

One solution to the added value problem is to
place the entire text of the input �le myfile.tex

as special in the document. Although this satis�es
the formal requirement, it is a little coarse. To
edit the �le myfile.dvi consists of editing the copy
of myfile.tex which is embedded as a special in
myfile.dvi. It would not be di�cult to adapt a
text editing program, so that it operated on this
embedded special, rather than a self-contained �le.
TEX can then be run, without an error arising one
hopes, to refresh myfile.dvi.

Although coarse, this illustrates the essence of
the method by which .dvi �les may be edited via
the previewer. What is required is that the process
be re�ned.

So far as I know, products such as Lightning
Textures continually refresh the previewed .dvi �le
as the the user changes the source .tex �le, but
do not associate the individual characters, words or
markup in the underlying .tex �le to the content
of the displayed .dvi �le. Thus, the user cannot
edit the .tex �le solely by interacting with the
.dvi �le. This is possible with Scienti�c Word,
which should be thought of as a WSYIWYG or more
exactly visual editor, whose underlying �le format
is LATEX. I believe that it is precisely because TEX
as usually used does not allow the solution of the
problems described here, that Scienti�c Word does
not use tex to format �les for the editor to display.

Smaller Specials

The text of a document, say as an ASCII �le,
is naturally broken down into paragraphs, words,
characters, and spaces. It seems natural to break
a document down into words. They are the
smallest units of meaning. This is re
ected in the
very name of the tool used by authors to prepare
documents, the word processor. Programmers are
more accustomed to using the �le editor.



For the moment, we shall assume that the
document is very plain, with no changes of font
or other control sequences. Suppose that we have
a TEX format that will, besides typesetting the
document, place before each word in the document
a \special, whose content is the following word, as
represented in the source �le. Because of ligatures
and hyphenation, this may not be the same as the
characters which follow the \special in the .dvi

�le.
Suppose that myfile.dvi is created from my-

file.tex by using this format. It will not be
di�cult, by extracting the text of the specials, to
recreate myfile.tex from myfile.dvi. (This is not
strictly correct. Assuming the usual category codes,
additional spaces between words, additional lines
between paragraphs, and the location of line breaks
within paragraphs, will all be lost when passing
from myfile.tex to myfile.dvi. This is probably
no great loss. Contrarywise, typeset paragraph line
breaks have been introduced. It may even be an
advantage to have a source �le whose line breaks
agree with those of the .dvi �le.)

A Special Format

It is not so di�cult to create a format that will
read the input �le word by word, and place the
words as it reads them into \specials. The
code below, which is intended to be read in an
environment where white space is ignored, and ~ is
a space character, shows the basic features of such
an environment.

The macro \sentinel is used simply to indicate
the end of a paragraph, or the end of the �le.

\def \sentinel { \noexpand \sentinel }

The idea now is to de�ne \dopar so that

\dopar

The first paragraph is not very

long at all.

The second paragraph is even

shorter.

\sentinel

will result in appropiate typesetting and specials.
Here is a simple (too simple) implementation.

The macro \dopar will read text paragraph by
paragraph, until the \sentinel follows a blank line
or explicit \par.

\def\dopar #1 \par #2

{

\doword #1 ~\sentinel \par

256 TUGboat, Volume 17 (1996), No. 3

\if #2 \sentinel

\let \next \relax

\else

\let \next \dopar

\fi

\next

}

The macro \doword similarly goes through the
paragraph word by word until \sentinel is reached.

\def \doword #1~#2

{

\special { #1 } #1~

\ifx #2 \sentinel

\let \next \gobble

\else

\let \next \doword

\fi

\next #2

}

This sample code is not intended to be the
basis for a practical implementation of a format
that will create value-added .dvi �les. Rather, its
purpose is to show that such a format is possible,
and to draw attention to some of the di�culties
which may be encountered when creating such an
object.

Editing via a Previewer

Suppose now that myfile.dvi has been created
by a format �le as above. The viewer notices a
misspelt wrod. Within a special in the .dvi �le, it
is easy to change the letters wrod into word. It will
be harder to add or delete letters within the special,
because there would not be room for the addition
at the correct point in the .dvi �le, or a hole would
be left in it. But this is the sort of problem which
editing programs are accustomed to dealing with.

Now that the copy of myfile.tex which is
within myfile.dvi has been changed, one would
like the rest of myfile.dvi to be brought up to date.
For simplicity, we shall assume that myfile.dvi is
simply one page, a galley that is long enough to
accommodate all that is placed on it. Changing
wrod to word will change the paragraph in which
it is placed. The change will in general be more
complicated than replacing wrod by word. Even
this simple change may change the line breaks in
the paragraph. Hyphenation may change, as may
ligatures and kerning. Correcting a simple letter
transposition error will require resetting the whole
paragraph.



In most TEX formats, the size and content
of one paragraph does not in
uence the setting of
the others. All then that needs to be reset is
the paragraph in which the change occurred. If
the document were set into pages rather than just
a galley, then page breaks would also need to be
reconsidered.

This discussion has focussed on changing the
letters in a single word in a paragraph. Adding
or deleting whole words will go the same way, as
will addition or deletion of paragraphs, provided
the format does not do something like numbering
paragraphs. In any case, TEX will be required to
process some text when a change is made to the
.tex �le embedded in the .dvi �le, to bring the
.dvi �le up to date.

Calling TEX from the Previewer

When the user has �nished making changes to the
paragraph, or earlier if wished, the previewer must
call upon TEX to reprocess the changed paragraph.
As before, we assume that the di�culty faced by all
editing programs, of deleting or adding material in
the middle of a �le, has been solved.

TEX turns a text �le into a .dvi �le. Ordinarily,
this .dvi �le is not accessible until TEX has come
to an \end. By writing a suitable device or virtual
�le, which will depend on the operating system, it
should be possible to use the .dvi output of TEX
before the \end. Thus, a command such as

\shipout\vbox{\input tempfile}

will cause TEX to produce a page which contains
the revised and reset paragraph, which the editing
functions attached to the previewer can now paste
into place, replacing the old version. Incidentally, if
the output of TEX is a virtual .dvi �le, then there
should be no reason why the input tempfile.tex

should not also be a virtual device.
The foregoing discussion is intended to demon-

strate that by combining TEX as it is, together
with a suitable format, a suitable previewer, editors
for text and .dvi �les, and a bit of operating
system virtual �le magic, it is possible to produce a
WSYIWYG variant of TEX. Users of this composite
program will be able to edit their documents via
the previewer. The format as described is limited
to a single page, a single font, and no mathematics,
but it does have multiple paragraphs.

Breaking Pages

Suppose now that the document is broken into
pages, and a paragraph is added. All subsequent

TUGboat, Volume 17 (1996), No. 3 257

pages, and perhaps the previous page, will have
to be reconsidered. Assume TEX is being used
in a normal manner, so that parameters such as
\linepenalty and \brokenpenalty do not change
from page to page. Were TEX to reprocess the
whole of the changed myfile.tex, all paragraphs
from the previous version would be broken exactly
as before, and so there would be no need for them
to be reset.

The previewer and editor combination can ask
TEX to break the new document by passing it a
suitably coded sequence of boxes, penalties, skips
and kerns to break, for this is all the page breaking
mechanism (The TEXbook, Chapter 15) operates
on. Alternatively, some other program could be
asked to do the breaking. This is the approach
taken by Type & Set (Asher, 1992).

Control Words

The aspect which presents the most di�culties is
now to be discussed, and brie
y at that. Most
documents contain control words, such as \TeX

and \section and \eqalign. These are part
of the source myfile.tex and so they must go
into myfile.dvi as specials. When it comes to
the editing process, even though the addition or
deletion of a control word such as \TeX is fairly
innocuous, to add or remove an \equalign can
have a drastic e�ect.

The braces {}, and the mathematics shift char-
acter $, will also have a drastic e�ect when added or
removed from myfile.tex. The same is true when
the delimiter required by some macro is omitted.
For this approach to have all the typesetting power
and programmability which TEX provides, access
to local change of font etc., parameter delimiters,
and mathematics shift must be provided. This has
to be done in a manner which is consistent with
the editing requirements imposed by the embedded
\special approach.

Unbalanced braces, missing or extra mathe-
matics shift characters, and missing delimiters all
provide di�culties for users of TEX. A format
which detected such input errors early, before they
gave rise to an error message from the stomach of
TEX, could make TEX easier for many users. A
format which allows the user to edit the copy of
myfile.tex embedded within myfile.dvi would
similarly have to detect input errors before they
reach TEX's stomach.



Performance

It is quite possible that such a format, which
reproduces the input text as specials, and detects
all errors before TEX does, will run at perhaps a
tenth of the speed of a regular format. However, the
usual approach requires the document to be typeset
as a whole, and so an unchanged paragraph may be
typeset a dozen times or more during the revisions.
A format which sets whole documents slower, but
which is able to reset the document paragraph by
paragraph may very well consume fewer machine
cycles over the life of a document.

Moreover, the paragraphs can be set or reset as
completed, rather than �le by �le. If the computer is
su�ciently rapid, and many are today, this machine
work can be done as required. This will result in
the user being locked out for a short period at the
end of each paragraph, while processing takes place,
just as an editing program may deny access to the
user while a �le is being written.

Thinking alike

Since writing this article, I found the following
statement put forward to motivate the CONCUR

feature provided by SGML.
It is sometimes useful to maintain informa-
tion about a source and a result document
simultaneously in the same document, as
in \what you see is what you get" (WSYI-

WYG) word processors. There, the user
appears to interact with the formatted
output, but the editorial changes are ac-
tually made in the source, which is then
reformatted for display.

This quotation comes from Annex C.3.1 of ISO 8879
(the SGML standard) and is also reproduced (as is
the whole of ISO 8879) in Goldfarb (page 88).

Conclusions

More can be done with TEX as it is, than is
commonly realised. Some of its limitations exist
in the imagination of the critics rather than in the
program itself. I hope that all those who say that
TEX cannot do such-and-such think carefully as to
why it is that TEX cannot do what they wish.

For a portable WSYIWYG variant of TEX to be
produced, the various additional components, which
are previewer, .dvi �le editor, text �le editor, and
operating system magic, must also be portable or
ported. An editor for .dvi �les is probably the
most important new program. For this to work

258 TUGboat, Volume 17 (1996), No. 3

most e�ectively, it may be necessary to extend the
.dvi �le speci�cations.

Also required is a format �le, which satis�es
requirements far more exacting than met at present.
This also would be a major piece of work.

Acknowledgements

The author thanks Mimi Burbank for correcting
many errors in a previous version of this article,
and Alan Hoenig for some encouraging remarks.

Postscript

For various reasons the publication of this article
has been long delayed. (It was widely circulated in
preprint form at TUG'93 in Aston, England, and
was submitted later in that year. Not all of the delay
has been due to the author.) Since then, the author
has solved all the fundamental problems involved in
creating a TEX format �le that will create a .dvi �le
that can be visually processed. Also since then the
World Wide Web has `taken o�' and this provides
an additional reason for producing .dvi �les which
support rich visual interaction. The article \TEX
innovations at the Louis-Jean printing house", by
Laugier and Haralambous, describes an interesting
program that allows certain changes to be made
interactively to a .dvi �le. Also relevant is the
author's own article, \Documents, compuscripts,
programs and macros".

There is some overlap between this article
and Rahtz, \Another look at LATEX to SGML

conversion". In both cases, the placing of text from
the document into the .dvi �le as \specials is a
crucial technique. In this article the purpose is to
store the original text of the article. For Rahtz,
the purpose is to create a transformed form of the
article.

Also relevant is the article of Kawaguti and Ki-
tajima, which describes a di�erent approach. They
have created a loosely coupled composite from adap-
tions of two existing tools, namely emacs and xdvi.
Special tags are added to a traditional (La)TEX
source �le, which produce \specials containing �le
name and line numbers in the .dvi �le. These are
used to support new emacs and xdvi commands,
which together allow the user to move the emacs

cursor by clicking on the previewed .dvi �le. This
is, as the authors recognise, not the same as what
this article calls visual typesetting.

Would those who are interested in following
the path outlined in the present article, particularly
on the viewing and editing side, please contact me.
For such a system to provide an open architecture,



standards for the use of specials, going far beyond
Rokicki's \A proposed standard for specials", will
be required.

Bibliography

Asher, Graham. \Inside Type & Set", TUGboat 13
(1), pages 13{22, 1992.

Fine, Jonathan. \Documents, compuscripts, pro-
grams and macros", TUGboat 15 (3), pages
381{385, 1994.

Goldfarb, Charles F. The SGML Handbook, Oxford
University Press, 1990

Kawaguti, Minato and Kitajima, Norio. \Concur-
rent use of an interactive TEX previewer with
an Emacs-type editor", TUGboat 15 (3), pages
293{300, 1994.

Laugier, Maurice, and Yannis Haralambous, \TEX
innovations at the Louis-Jean printing house",
TUGboat 15 (4), pages 438{443, 1994.

Lavagnino, John. \Simultaneous electronic and pa-
per publication", TUGboat 12 (3), pages 401{
405, 1991.

Mittelbach, Frank. \E-TEX: Guidelines for future
TEX", TUGboat 11 (3), pages 337{345, 1990.

Poppelier, N. A. F. M. \SGML and TEX in Scienti�c
Publishing", TUGboat 12 (1), pages 105{109,
1991.

Rahtz, Sebastian. \Another look at LATEX to SGML

conversion". TUGboat 16 (3), pages 315{324,
1995.

Rokicki, Tomas G. \A proposed standard for spe-
cials", TUGboat 16 (4), pages 395{401, 1995.

Taylor, Philip. \The future of TEX", TUGboat 13
(4), pages 433{442, 1992.

Siebenmann, Laurent. \The Lion and the Mouse",
EuroTEX '92 Proceedings, edited by Ji�r�� Zlatu�ska,
pages 43{52, 1992.

� Jonathan Fine

203 Coldhams Lane

Cambridge, U.K.

CB1 3HY

J.Fine@pmms.cam.ac.uk

TUGboat, Volume 17 (1996), No. 3 259


