TUGDboat, Volume 18 (1997), No. 4

Spindex — Indexing with Special Characters

Laurence Finston

1. Introduction

Books in the field of philology, among others, often
contain many special characters: letters like & and
b, ligatures like & and ce, phonetic symbols like
§ and y and even more unusual ones. If these
books require indexes, words with these special
characters must be sorted alphabetically. However,
to the best of my knowledge, the available indexing
programs are only able to sort words in English,
or at best in a handful of European languages.
Spindex (for “Special Index”) is a package that can
sort arbitrary special characters alphabetically. It
can also be adapted for use with languages that do
not use the Latin alphabet.

TEX has no built-in routines for alphabetical
sorting, so it is necessary to use the sorting routines
belonging to the operating system, a programming
language, or another program. Spindex is a
combination of TEX macros in the file spindex.tex
and a program written in Common Lisp in the file
spindex.lsp. It is intended for use with plain
TEX, but it is possible (with some difficulty) to use
it with IATEX, too.

The first section of this article explains Spindex
for the user who just wants to use it for making an
index, and doesn’t care about how it works. The
following section explains some of the principles
behind the TEX macros and the Lisp program.

2. Using Spindex

In order to use Spindex, the file spindex.lsp,
containing the Lisp program, must be in your
working directory, and spindex.tex, containing
the definition of the TEX macro \indexentry and
additional TEX code, must be either in your working
directory or in a directory in TEX’s load path as
defined in your texmf.cnf file (if you don’t know
what this is, ask your local TEX wizard, or just put
the file in your working directory). Your input file
must include the line \input spindex before you
use \indexentry for the first time.

When you use \indexentry, it causes TEX to
write a file of Lisp code called entries.lsp. When
TEX is done with your input file, you invoke the Lisp
interpreter and give spindex.lsp to it as input.
If you’re using the Gnu Lisp interpreter, which is
what I use, you type

gcl<spindex.lsp

255

The program in spindex.lsp loads entries.lsp
and creates a TEX file containing the index called
index.tex. Now you can run TEX on index.tex.
Below I describe how to automate this process and
include index.tex in your original input file.

2.1. The macro \indexentry. An index entry
is created using \indexentry, which has six
arguments, all of which except for #1 may be
empty (i.e.,, {}). TEX does not have true optional
arguments, but it is possible to define macros so
that they check whether an argument is empty or
not, simulating the effect of optional arguments.
The consequence of this is that six sets of braces
must always follow \indexentry whether there’s
anything in them or not.

The first argument, #1, is name, which is used
for alphabetizing the entries, and it is usually what
is written to the index. It is the only required
argument. An occurrence of \indexentry with
only the name argument is the simplest possible
kind. For example,

\indexentry{nouns}{}{}{}{}{}
on page H4
—
nouns oo .o+ b4

In most cases, \indexentry will be typed into the
input file directly after the word or phrase that it
refers to:

a noun\indexentry{nounsHI{IH{IH{}{} is

a word that refers ...

produces the following output:
a noun is a word that refers ...

Putting \indexentry directly after the word or
phrase it refers to prevents a page break between
them, which would cause an incorrect page number
to appear in the index. However, \indexentry can
also stand alone, as in the examples below. Note
that \indexentry has no effect on the output file.
All it does is write information to entries.lsp,
which is used for making the index. However, I use
a conditional called \ifdraft for editing purposes
that makes \indexentry write a marginal hack
whenever \drafttrue, i.e., whenever \ifdraft
expands to \iftrue.

a noun is a word that refers ...

For the final draft, T set \draftfalse, and the
marginal hacks disappear.

Argument #2 is text, and will usually be empty.
If it’s not empty, it’s what’s written to the index,
but the entry is still alphabetized according to name.

\indexentry{A}{A (the letter A)}{}{}{}{}

nouns

256

=
A (theletter A)96

but “y(the letter A)” does not affect the alphabeti-
zation of the entry.

The text argument can also be used for putting
comments into the index at a particular place.

\indexentry{nouns}{*Comment*}{}{}{}{}
\indexentry{prepositionsHI{}{}{}{}
\indexentry{adverbs}{}{}{}{}{}

=

adverbs87
Comment®8
prepositions87

Note that “*Comment™ is put where “nouns”
would go. The text argument only has an effect
when an entry is created. After that it’s ignored,
so if you want a text, you must make sure it’s set
the first time. It would be easy to change this, but
I felt that it was safer to program it this way. Most
of the time text will not be used. It is only for
special cases like these.

The best way to set text is to use dummy
entries at the beginning of your input file where
the page number is suppressed using argument #3.
A comment, like the one in the previous example,
also shouldn’t have a page number and leaders
attached. Suppressing the page number can also be
useful for editing, when you’re not sure whether to
include a particular occurrence of an entry in the
index. It doesn’t matter what appears in #3; if it’s
non-empty, this occurrence of \indexentry will not
cause the current page number to be added to the
list of page numbers for this entry.

\indexentry{verbs}{}{np}{}{}{3}
=

verbs
I like to use “np” (for “no page”) in #3, but it
can be anything within reason.! If an entry has no
page numbers, no leaders are printed. Suppressing
the page number in one invocation of \indexentry
doesn’t affect another invocation on the same page.

\indexentry{verbs}{ Inp}{}{}{}
\indexentry{verbs}{}{}{}{}{}

—
verbs 123
Argument #4 is for a cross-reference. A cross-

reference can be an arbitrary string or it can

1" An undefined control sequence or a macro with
insufficient arguments will cause an error.

TUGDboat, Volume 18 (1997), No. 4

correspond to another entry. Here’s an entry with
a cross-reference that refers to an arbitrary string.

\indexentry{ships{}{}{transport}{}{}
=

ships75
See also: transport

Here’s one with a cross-reference that refers to
another entry.

\indexentry{ships}{}{}{boats}I{}
\indexentry{boats}{}{I{}I{}{}

=

boats b4
ships54
See also: boats

Doesn’t look much different, does it? But when a
cross-reference refers to an entry that had a text
(#2) argument, there is a difference.

\indexentry{boats}/,
{boats (lat. naves)}{}{}{}{}
\indexentry{ships}{}{}{boats}{}{}

=

boats (lat. naves) 54
ships54
See also: boats (lat. naves)

The cross-reference uses the text of an entry, if
it exists. If there are multiple cross-references,
they are alphabetized according to what is actually
printed, i.e., the texts, if they exist, whereas
the entries in the index are always alphabetized
according to name.

Spindex allows 3 levels of nesting — headings,
subheadings and subsubheadings. Argument #5 is
the heading, if the entry is a subheading or a
subsubheading, and #6 is the subheading, if the
entry is a subsubheading. This is how you make a
subheading entry:

\indexentry{transitive}{}{}H{IHverbs}{}
—

verbs

transitive 54

Here’s one for a subsubheading entry:

\indexentry{active}{}{}{}{verbs}’

{transitive}

_—

verbs

transitive
active49.

TUGDboat, Volume 18 (1997), No. 4

A subheading or subsubheading entry will create an
entry for its heading and/or subheading, if these
don’t already exist.
Here’s a slightly tricky example (the line
\hbox{}\eject is only there to end page 57).
\pageno=57
\indexentry{monosyllabic}{}{}{}%
{adverbs}{temporal}
\hbox{}\eject
\indexentry{adverbs}{sbrevda}H{{}H{}{}

—

adverbs58
temporal
monosyllabic57

Do you see why “sbrevda” is not written to the
index? The first invocation of \indexentry, for
“adverbs, temporal, monosyllabic”, caused entries
for “adverbs” and “adverbs, temporal” to be created
automatically. When \indexentry was invoked
for “adverbs” in its own right, on page 58, the
text argument was ignored, because the entry for
“adverbs” had already been created. The best way
to deal with this problem is by using a dummy
entry, like this:

\pageno=1

\indexentry{adverbs}{sbrevda}{x}t{}{}{}

\hbox{}\eject

\pageno=57

\indexentry{monosyllabic}{}{}{}%

{adverbs}{temporal}
\hbox{}\eject
\indexentry{adverbs}{}{}{}{}{}

=

sbrevda58
temporal
monosyllabic 57T

[

Here T use “x” to suppress the page number
for the dummy entry. Subsequent invocations
of \indexentry for “adverbs”, like the one on
page 58, needn’t specify the text argument, since
it’s ignored.

Sometimes it might be desirable to put sub-
or subheadings in order, but not in alphabetical
order, if another ordering principle seems more
appropriate.

\pageno=1

\indexentry{light}{light, visiblel}’

LxxxHHH}

\indexentry{wavelengths}{}{}{}%

{light}{}
\hbox{}\eject
\indexentry{f}{violet}{}{}{light}%

257

{wavelengths}
\hbox{}\eject
\indexentry{d}{green}{}{}{1light}/
{wavelengths}
\hbox{}\eject
\indexentry{b}{orange}{}{}{1light}¥
{wavelengths}
\hbox{}\eject
\indexentry{c}yellow{}{}{1light}%
{wavelengths}
\hbox{}\eject
\indexentry{light}{}{}{3{}3{}
\hbox{}\eject
\indexentry{at{redH}{}{light}%
{wavelengths}
\hbox{}\eject
\indexentry{e}{blue}{}{}{1light}
{wavelengths}
—
light, visible .
wavelengths
red .
orange .
yellow
green
blue . .
violeto 00 2
The subsubsubheadings (the colors of visible light)
are alphabetized according to their names, i.e., “a”,
“b”, “c”, etc. This has the effect of putting them
in order according to their wavelengths. Since
there are no other subsubheadings, this causes no
problems. Some items may have a conventional
order that takes precedence over the alphabet.

\indexentry{Bears, the Three}{}{1}/

{Goldilocks}{}{}

\indexentry{c}{Baby}{}{}/
{Bears, the Three}{}

\indexentry{c}{Baby}{}{}%
{Bears, the Three}{}

\indexentry{a}{Papa}{}{}/
{Bears, the Three}{}

\indexentry{b}{Mama}{}{}V
{Bears, the Three}{}

X wWotE N =o

_—
Bears, the Three 23
See also: Goldilocks
Papa 00023
Mama23
Baby 00023

Cross-references can refer to subheadings and
subsubheadings, too:

258

\indexentry{schooners}{}{}{}{ships}’
{sailing}

\indexentry{rigging{}{}%
{ships-sailing-schooners}y,

{33
_—
rigging54
See also: ships, sailing, schooners
ships
sailing
schooners b4

A cross-reference that refers to a heading entry
simply uses the name argument from that entry.

\indexentry{carnivores}{}{}{mammals}{}{}
\indexentry{mammals}{}{}{}{}{3}

—t
carnivores 2b.
See also: mammals
mammals25

It doesn’t matter if the entry being used as a cross-
reference has a text; you use the name anyway, but
the text is printed to the index file.

\indexentry{fish}y
{fish ({|litl|pisces})}%
{3
\indexentry{oceans}H{HIHfish{}{}

—
fish (pisces) 100.

oceans 1loo.
See also: fish (pisces)
When a subheading entry is used as a cross-refe-
rence, its heading and name arguments, separated
by a hyphen, are used in the cross-reference
argument of the entry that refers to it.
\indexentry{wolves}}I{}I{bears-brown}{}{}
\indexentry{brown}{}{}{}{bears}{}

=

bears
brown . 371.
wolves 371.

See also: bears, brown

When a subsubheading entry is used as a cross-refer-
ence, its heading, subheading and name arguments,
separated by hyphens, are used in the cross-
reference argument of the entry that refers to it.

\indexentry{American}y,
{American (Eastern)}’
{}{}{vears}{brown}

\indexentry{wolves}{}{}V

TUGboat, Volume 18 (1997), No. 4

{bears-brown-American}{}{}

=
bears
brown
American (Eastern) 41.
wolves Y

See also: bears, brown, American (Eastern)

The syntax of cross-references is:
(cross-reference) — (arbitrary string)
| (entry reference)
(entry reference) — heading(suffix)
(suffix) — (empty) | ~subheading
| ~subheading-subsubheading

Only one cross-reference can appear in any given
occurrence of \indexentry.

Of course, subheading and subsubheading
entries can themselves have cross-references, and
their page numbers can be suppressed, too:

\indexentry{fish}{}{I{}{}{}

\indexentry{freshwater}{}{np}’%
{angling}{fish}{}

\indexentry{sturgeon}{}{}{caviar}y
{fish}{freshwater}

=

fish 14
freshwater
See angling
sturgeon14
See also caviar

So far, all of the examples have been of entries
with only one page number. Here’s an example
with multiple page numbers.

\pageno=5

\indexentry{trains}{}{}{}{3{}

\hbox{}\eject

\pageno=10

\indexentry{trains}{}{+{}{}{}

\hbox{}\eject

\pageno=15

\indexentry{trains}{}{}{}{3{}

\hbox{}\eject

\pageno=25

\indexentry{trains}H}{}I{}{}{}

\hbox{}\eject

=
5, 10, 15, 25.

If an entry occurs on consecutive pages, page ranges
are printed to the index instead of the individual
page numbers.

trains

trains

diesel 62-98.

TUGDboat, Volume 18 (1997), No. 4

electric
steam .

105-210.
. 5-10.

Sometimes, the last number in a page range is
abbreviated.

ships . . 104-23.
sailing . . 1004-200.
steam . 1239-98.

The rules for abbreviating page numbers are
described on page 269.

If an entry has no page numbers, but it does
have a cross-reference, “See” is printed instead of
“See also”.

\indexentry{adjectives}{}%
{suppress page number!}},

{pronouns}{}{}
BN

adjectives
See pronouns

If there are two cross-references, they are
separated by “and”, and if there are three or
more, the last two are separated by “and” and the
others are separated with a semi-colon.

\indexentry{schooners}{}{}{}{ships}{}
\indexentry{shipsH{}{}{boats}{}{}
\indexentry{ships}{}{}{transport}H{}{}
\indexentry{ships}{I{}{fishery}{}{}
\indexentry{rigging}{}{}%
{ships-schooners}{}{}
\indexentry{rigging}{}{}{boats}{}{}

—
rigging54
See also: boats and ships, schooners
ships54
See also boats; fishery and transport

schooners b4

If an entry has no page numbers, no cross-
references and no sub- or subsubheadings, it will be
printed to the index, but spindex.1lsp will issue a
warning.

If more than one index is desired, for instance
an index of names and an index of subjects, it
would not be difficult to add a seventh argument to
indicate to which index an entry belongs.

2.2. Coding special characters and macros.
By now, you’re probably convinced that Spindex
has plenty of bells and whistles, but the capabilities
described so far don’t offer any significant advantage
over the available indexing packages. The real power
of Spindex is its ability to perform alphabetical
sorting on arbitrary special characters.

259

It is not possible to use the normal coding
for special characters, like \dh for 0, \th for D,
\ae for @, and \o for ¢, in \indexentry’s argu-
ments. If your computer can represent charac-
ters like “&” on its screen, and you've defined
\catcode ‘\&=\active and \letz=\ae, you can’t
use “@” in an \indexentry either. Nor can you
use ~ as a tie. Instead, special characters are
coded by leaving out the \ and surrounding what
remains with ||, like this: |dh| for 0, |th| for
b, etc. Active characters, like =, if they are used
in \indexentry at all, must use a similar coding
using only non-active characters. To use special
characters that are only available in math mode,
just surround the coding with $$, e.g., $lalephl$.
Using || is actually better, since using the normal
codings could result in a lot of nested braces,
which would make the input file difficult to read,
especially since \indexentry already has 6 sets of
braces. (Incidentally, Spindex includes an Emacs-
Lisp function for writing \indexentry which queries
for the arguments and puts them inside the braces
automatically.)

Here are some examples
characters in \indexentry.

\indexentry{|thleir}{}{}{}{s|’al}{}

\indexentry{s|ae|tninger}{}{}%
{sl"altze{}{2}

\indexentry{$|aleph|$}%

of wusing special

{$laleph|$ --- The letter alephl}’
{33
\indexentry{|polll}y
{lpoll| -- Polish |poll|}%
O
_—
N — The letter aleph 54.
t—Polisht54
sa
beir b4
seetninger b4

See also: Satze

| | can be used to code anything, in particular, any
control sequence, not just special characters. For
example:

\indexentry{{|it|verbs} {3}
—

verbs19
You could achieve the same effect with

\indexentry{verbs}{{lit|verbs}H}{F{}{}
but there is a difference. If

\indexentry{verbs{}{}{}{}{}

260

and
\indexentry{{|it|verbs}{IH{HHH{}

were both used in an input file, they would create
two different entries, printed on different lines, one
in the current font (probably roman) and one in
italic, but the entries would be identical with respect
to alphabetization. Their order in the index file
would correspond to the order of the invocations
of \indexentry in the input file. In most cases,
it will be easier to put a font change in the text
argument, but in special circumstances it might be
better to have it in the name argument instead.

2.2.1. Customizing spindex.lsp. There is a
huge number of special characters available and
each project will have its own special requirements.
Even when the same characters are used, their order
may differ. For these reasons, it is necessary for
the user to customize spindex.1lsp for each set of
requirements. This is not difficult. In spindex.1lsp
you will find a list that looks like this.

(abcddhefghijklm
nopqrstuvwxyz
ae oslash acirc thorn)

These are the characters that will be assigned
a unique integer value, in ascending order, for
alphabetical sorting. The exact items in this list
will depend on the user’s requirements. A function
called set-char-values assigns the integer values to
variables with names based on the items in this list,
i.e., a-value, b-value, ... thorn-value. Usually, more
than one character will occupy the same position in
the alphabet, so not all of the characters used will
require their own value. Some share a value with a
character in the list, for example, according to some
alphabetization conventions, “a”, “a4”, and “a” will
all use a-value. All of the uppercase letters share
a value with their corresponding lowercase letters.
In some languages, ligatures like “&” and “ce” are
treated as “ae” and “oe” respectively, so they are
assigned a list of two values, i.e., (a-value e-value)
and (o-value e-value). In Danish, however, “&” has
its own position toward the end of the alphabet, so
if a user needs an index sorted according to Danish
conventions, set-char-values will have to assign an
integer value to a symbol for “a&”.

Each ordinary character and special coding that
may appear as an argument in \indexentry must
be accounted for in the function letter-function in
spindex.1lsp. This is how the code in letter-function
looks for an ordinary character:

((or (equal local-string "a")
(equal local-string "A"))
(setq current-int-list ‘(,a-value)))

TUGDboat, Volume 18 (1997), No. 4

Here’s how the code looks for a special character:

((or (equal local-string "thorn")
(equal local-string "th"))

(setq current-int-list “(,thorn-value))

(setq current-tex-code "{\th}"))

This tells spindex.1lsp that |th| and |thorn| are
valid special codings, that they are assigned the
value thorn-value, and that they are to be replaced
with {\th} when spindex.lsp writes the index
file. Note that the names of the symbols need
not correspond to the coding used in \indexentry:
“p” is coded as \th in TEX and can be coded
as |thl or |thorn| in \indexentry. However,
in the character list, the symbol associated with
“p” is called thorn. In other cases, the name of
a symbol is not permitted to be the same as the
coding in TEX and \indexentry. For instance, the
coding for “¢” is \o and can be coded as |ol| in
\indexentry. However, the symbol in the character
list may not be o, because this is already used for
“0”. So the symbol in the character list is called
oslash. If a character like “&4”, coded as \"a in
TEX and |"al| in \indexentry, should be assigned
its own value, the symbol name would have to be
something like aumlaut instead of "a, since the "
would cause a fatal error in spindex.1lsp. Spindex
includes detailed instructions for customizing the
Lisp program.

2.3. Overview of \indexentry’s arguments

e Argument #1 (name). Only required argument.
Used for alphabetizing entries at all levels
(heading, subheading and subsubheading).
Printed to index file unless #2 (text) is non-
empty.

e Argument #2 (text). Printed to index file if
non-empty, but entry is alphabetized according
to name. Also used when a cross-reference refers
to this entry. Can be used for comments and
other special purposes.

e Argument #3 is used for suppressing the page
number. Any string containing only characters
of \catcode=11 (“letter”) and/or \catcode=12
(“other”) can be used safely.

e Argument #4 (cross-reference). Can be an
arbitrary string or refer to another entry at any
level, using a special syntax described above.
Entries at any level can have cross-references
(see page 257).

e Argument #5 (heading). Will be empty if the
entry is a heading. If the entry is a subheading
or a subsubheading, this argument refers to the
heading entry, of which this entry is a sub- or
subsubheading. Used for making a Lisp symbol.

TUGboat, Volume 18 (1997), No. 4

e Argument #6 (subheading). Will be empty if
the entry is a heading or a subheading. If the
entry is a subsubheading, this argument refers
to the subheading entry, of which this entry is a
subsubheading. Used for making a Lisp symbol.

2.4. Running Spindex. The \indexentry macro
may write a marginal hack, but otherwise it has
no effect on the file in which it is used. It simply
writes a file of Lisp code that’s used to generate
another TEX file. Spindex does not in itself make
any connection between the two TEX files. The user
can (and must) decide what to do with them.

I use a combination of a UNIX shell script and
a TEX driver file to control running TEX and Lisp.
This is a rather complicated topic, since I also use
them to control other things, like generating the
table of contents, the bibliography, page references,
etc. I plan on describing this technique in a sub-
sequent article, but here is a simple example just
for the index.

1. #### This is the shell script run_driver
2.

3.if [[-f index_switch.tex 1]]

4. then

5.rm index_switch.tex

6. fi

7.

8. tex driver

9.

10. if [[-f index_switch.tex 1]

. then

. gcl<"spindex.lsp"

. tex driver

. else

. echo "There were no index entries"
Cfi

e e e e
DU W N

. %%%h This is the TeX driver file
. %% driver.tex

.\newif\iffirstrun

. \newread\indexin

. \openin\indexin=index_switch
. \ifeof\indexin

. \firstruntrue

.\else

. \firstrunfalse

. \let\suppressindex=t

\fi

. \closein\indexin

— =

= = R

. \input spindex

= =
e

. \input input_file

-
%

\iffirstrun
. \message{This is the first rum,
not inputting index}/

NN
= O ©

. \else

[V
[V

261

23. \message{This is the second run,
24. inputting index}%

25. \vfil\eject

26. \input index

27. \fi

28. \bye

The shell script run_driver runs TEX on
the file driver.tex. If \indexentry isn’t used,
then run_driver is finished. Otherwise, it runs
spindex.lsp to create the index file. Then it runs
TEX on driver.tex again. This time, no file of
Lisp code is written; instead, driver.tex inputs
the index file and TEX exits.

2.5. “Faking” an index. Since entries.lsp and
index.tex are both ordinary ASCII files, it’s
possible to edit them as one would edit any TEX
file or Lisp program. Since they are automatically
generated and old versions are overwritten, this
would only make sense for polishing a final draft.
But it is possible. More practical is a dummy TEX
file that contains invocations of \indexentry but no
text to be typeset, like the examples above. Explicit
page breaks and numbering must be specified.
This is an example of an index produced using a
dummy file:

N — The letter aleph 23.
alphabets

Polish . e 12-16.
Danish words 122

0 — The letter italic 0
See: b (The letter thorn)

0 — The letter bold faced xx.
t—Polisht24
See also: alphabets, Polish
g (a phonetic symbol) 18
nouns . vili—=xxi, 11, 121-23, 146-49.
See also: verbs
parts of speech . x—xiv, 12.
See also: nouns and verbs
Séatze
iibergeordnete 12
untergeordnete 13.
seetninger 24
See also: Danish words and Sétze
verbs 12
intransitive 121
transitive o .12
See also: verbs, intransitive
active (except deponentia) 3, 12-27.
120-22.
See also: nouns; Sitze and gllebrgd
passive Vil

262

words
abstractions
abenhed
See: Danish words
This is a comment where yyy would be.

gllebrg613
See also: Danish word
andsarbejde17,
See also: Danish words
b (The letter thorn) 12

and this is the beginning of the dummy file that
produced it:

%% This is dummy_index.tex

\input spindex

\input ipamacs

\font\ipatenrm=wsuipal0

\def\ipa{\ipatenrm}

\pageno=3

\indexentry{yyy}{This is a %
comment where yyy would be.}/
{npH3H{3{}

\indexentry{active}{active %
(except deponentia)l}V,
{}{nouns}{verbs}{transitive}

\hbox{}\eject

\pageno=122

\indexentry{active}{}{}/
{lolllebrlol |dnhl}%
{verbs}{transitive}

\hbox{}\eject

\pageno=121

\indexentry{active}{}{}{S|"altzel}’
{verbs}{transitive}

\hbox{}\eject

\pageno=120

\indexentry{active}{}{}{S|"altzel}’
{verbs}{transitive}

The complete dummy file contains a total of 73
\indexentry commands.

2.6. Getting Spindex. Spindex will be available
on an ftp server under the normal conditions
applying to free software. If you are interested,
please contact me via email and I will tell you
where to get it. The program spindex.lsp was
written using the Gnu Lisp interpreter, which is free.
The program itself should work without any trouble
with a different Common Lisp interpreter; only two
non-essential functions use the operating system
interface, which always depends on the particular
Lisp interpreter you’re using. Getting these two
functions to work with a different interpreter should
require only minor adjustments.

TUGDboat, Volume 18 (1997), No. 4

3. Programming Spindex

3.1. Why not IATEX? Spindex is designed for
use with plain TEX. It’s possible to use it with
IMTEX, too, as mentioned above, but there are
some difficulties involved. I find that I#4TEX works
well as long as one of its pre-defined formats can
be used without significant changes. However, if
modifications are necessary, I find that programming
a format with plain TEX is much easier and gives
better results. It’s always a little risky to write
macros when using a large package like INTEX
that already contains a lot of macros. In I#TEX
especially, it’s difficult to figure out exactly what
macro or assignment is causing a certain effect, or
even to understand the macro definitions. Many
packages also change the \catcode of characters,
which can cause serious problems. For instance, if
you use a package that sets \catcode‘\|=\active,
Spindex will fail.

The program in spindex.lsp functions
independently of TEX or IX#TEX and only one
change is necessary to make \indexentry work
in IMTEX: \pageno must be replaced by \thepage.
The actual text of the index entries, the headings,
subheadings, subsubheadings, page numbers and
cross-references, will be the same whether you
use TEX or IATEX. However, spindex.lsp also
writes formatting commands to the index file,
and these must be compatible with the format
and the output routine being used. The version
of spindex.lsp that I’'m making available writes
formatting commands appropriate to the simple
plain TEX format and output routine that are
included in spindex.tex. The formatting is
performed by a combination of the code written
to index.tex by spindex.lsp and the definitions
in spindex.tex. Since the formatting commands
written to index.tex are defined in a general way,
it’s possible to make significant changes just by
changing the definitions in spindex.tex, without
making any changes to the Lisp program. However,
if the user wants spindex.lsp to write different
formatting commands, it’s easy to modify it.

Using Spindex with IATEX will require some
experimentation to get it to produce the kind of
formatting desired. Anyone who wishes to do this
may feel free. There are many I#TEX formats and
I rarely use any of them, so I have no interest in
doing this experimenting. This is a task best left to
a IMTEX programmer who really uses the formats.

3.2. Why Lisp? While it is possible to get TEX
to jump through hoops, I usually find it easier to
let TEX do what it does best, typesetting, and use

TUGDboat, Volume 18 (1997), No. 4

a conventional programming language for things
like storing and manipulating data, alphabetizing,
writing files, etc. While C seems to be the language
of choice for front-end programs for TEX, Lisp offers
a number of significant advantages, partly due to
Lisp code being interpreted rather than compiled.
It’s possible to have TEX write executable Lisp code
directly, so that it is unnecessary to write routines
for reading data from files, and Lisp code is easier
to test and debug than program code that must be
compiled. Lisp also has many functions for sorting
and manipulating strings and, of course, lists, Lisp’s
characteristic data type. In addition, the structure
of the program in spindex.lsp depends on Lisp’s
ability to use undeclared variables, which is not
possible in C. The program spindex.1lsp is not very
long, and it runs fast, at least on the installation
I'm using (a Dec Alpha computer running Digital
UNIX). I use the Gnu Lisp Interpreter, which is free
and works well. Unfortunately, it does not conform
to the newest standard described in Guy L. Steele’s
Common Lisp. The Language, 2nd ed., 1990, but
that hasn’t turned out to be a problem.

3.3. The TEX macro \indexentry. Spindex uses
the conditionals (\newifs) \ifdraft and \ifindex
and the control sequences \suppressindex and
\firstindexentry. We’ve already seen \ifdraft;
it’s used for telling \indexentry whether to write
a marginal hack or not. The conditional \ifindex
and the control sequence \suppressindex are used
for telling TEX whether to make an index or not.
The file spindex.tex contains the lines

\indextrue
%\indexfalse

one of which should be commented out, depending
on whether you want an index or not. There’s
another way of suppressing the index, though,
without changing spindex.tex. The input file
can contain the line \let\suppressindex=t or
\def\suppressindex{} before the line \input
spindex. Then, if \indextrue, \indexfalse is
set instead.

\ifindex

\ifx\suppressindex\undefined

\message{\noexpand\indextrue. %
Will make an index, if there %
are any entries.}

\else

\indexfalse

\fi\fi

\ifindex

\else

263

\message{\noexpand\indexfalse. %
Won’t make an index, %
even if there are entries.}
\fi

Then, the definition of \indexentry is put inside a
conditional using \ifindex.

\ifindex
\def\indexentry#1#2#3#4#5#6{...}\else
\def\indexentry#1#2#3#4#5#6{\relax}\fi

If \ifindex expands to \iffalse (\ifindexfalse),
\indexentry simply eats 1its 6 arguments.
The control sequences \firstindexentry and
\suppressindex are used as Boolean variables.
They can expand to a single token or be undefined,
and are used in conditional constructions. Their
specific values, if any, are not really important, so
I like to use n and t, like nil and t in Lisp. The
TEX driver file driver.tex uses \suppressindex
the second time TEX is run on it in order to prevent
\indexentry from overwriting entries.1sp.

The line \let\firstindexentry=t appears in
spindex.tex. Assuming \indextrue, if the control
sequence \firstindexentry expands to t (i.e.,
the first time \indexentry is invoked), it calls
the macro \beginindex, which performs certain
actions that only need to be performed once. It
opens a file called index_switch.tex and writes
something to it. It doesn’t matter what it writes—
all index_switch.tex has to do is exist. It’s used
for running Spindex with the UNIX shell script and
the TEX driver file described on page 261. TgX
cannot directly access shell variables or execute
commands in a shell, and a shell script cannot
directly influence TEX when it’s running. However,
both can write and test for the existence of files, so
I use index_switch.tex to communicate between
run_driver and driver.tex.

We're done with index_switch.tex now, so the
output stream is closed and freed to be reallocated,
if necessary. Now \beginindex opens the file which
will contain the Lisp code for the index entries. In
this article I call it entries.lsp, but actually it
can have any name within reason. Then it says
\let\firstindexentry=n, so these actions won'’t
be performed again.

Next, \indexentry takes arguments #2-#6 and
puts them in boxes. It checks the width of the boxes
and behaves appropriately, simulating the effect of
true optional arguments. This is a useful trick that
does not appear in The TEXbook. It’s not as neat
as a look-ahead mechanism using \futurelet or
\afterassignment and \let, but it’s a lot easier
to code. Here’s a simple example of this technique:

264

\setbox2=\hbox{#2}%

\ifdim\wd2>O0pt

\message{There’s something in %
argument 21}%

\else

\message{Argument 2 is emptyl}%

\fi

Above I state that six sets of braces must always
follow \indexentry. Strictly speaking, of course,
this isn’t true, but TEX will consider the six
tokens or groups that follow \indexentry to be its
arguments, so leaving out the braces (or characters
with \catcode=1 and \catcode=2) is hardly
practical. The \indexentry macro writes code
to entries.1lsp based on what’s in its arguments.
Argument #1 is required, so \indexentry doesn’t
need to put it in a box. It writes

(generate-entry @(name)@

The © symbol is used as a string delimiter instead
of " in order to make it possible to use " in
\indexentry’s arguments: |"al for “4”, |"ol for
“0”, etc. This means that @ “as is” in an argument
to \indexentry will cause a fatal error. But |@]
works. The other arguments are put into boxes.

\setbox2=\hbox{#2}%

\setbox3=\hbox{#3}%

\setbox4=\hbox{#4}%

\setbox5=\hbox{#5}%

\setbox6=\hbox{#6}/
Then,

\ifdim\wd2>0pt

\write\index{\space\space\space %

:text Q#20}Y%

\fi
causes

‘text @(text)@
to be written to entries.lsp if #2 is non-empty,
and similarly for the other four arguments, except
that #3 (for suppressing the page number) is treated
a little differently, since the page number is printed
by default:

\ifdim\wd3=0pt

\write\index{\space\space\space %

:page-no \the\pagenol/,

\fi
—

:page-no (page number)
if #3 is empty. After the arguments #2 through

#6 are tested for existence and the code (if any)
is written to entries.lsp, \indexentry writes

TUGDboat, Volume 18 (1997), No. 4

a closing parenthesis to match (generate-entry
©@(name)@. Here are some examples:

\indexentry{nouns}{}{3{}{3{}
—

(generate-entry @nouns@
:page-no 1

)

\indexentry{masculine}{masc.}/

{H{Hnouns}H?
—

(generate-entry @masculine@
‘text @masc.@
:heading @nouns@
:page-no 1

)

\indexentry{a-stems}{}{x}{verbs})
{nouns}{masculine}

=

(generate-entry ©@a-stems@
:heading @nouns@
:subheading @masculine@
:cross-ref @verbs@

)

\indexentry{s|ae|tninger}{}{}%
{sl"altze}{}{}

=

(generate-entry @s|aeltninger@

:cross-ref @S|"”a|tze@

:page-no 24

)
The \write commands in \indexentry are the
reason why it can’t use the normal coding for
macros in its arguments, i.e., the coding using
backslashes, like \th, \oe and \it. A \write
command will expand an expandable macro, and
write an unexpandable one as is, but with a
following space. There’s more about this topic in
section 3.6.

After TEX is done with the input file, and all of
the index entries have been processed, the output
stream \index associated with the file entries.1lsp
should be closed. I redefine \bye so that it calls the
function \endindex, which is defined like this:

\ifindex
\def\endindex{\closeout\index}
\else

\def\endindex{\relax}

\fi

TUGboat, Volume 18 (1997), No. 4

3.4. The Lisp program spindex.lsp. This
program loads the file of Lisp code, entries.1sp,
which was written by the \indexentry commands.
This file consists of invocations of the Lisp
function generate-entry, which uses \indexentry’s
name argument, and its heading and subheading
arguments, if present, to access a symbol (or
variable). Since the names of these symbols depend
on the arguments to \indexentry, they can be
different each time Spindex is run and therefore
cannot be declared in spindex.lsp. This may
appear to be dangerous, but it isn’t. Lisp has very
few reserved words. Most of its internal variables
begin and end in *, like *package*. If an index
entry is made with a name that duplicates the name
of a Lisp function, like car, this will not cause an
error (or even a problem), because each Lisp symbol
has a function cell and a value as a variable, and
the interpreter can tell from the context which is
meant. Also, safety routines can be written to catch
dangerous names before the string is used to create
a symbol. There is one for entries beginning and
ending in asterisks, “T” and “NIL”. The Gnu Lisp
interpreter has named constants that don’t begin
and end in *, but it will signal an error if an attempt
is made to change their values. However, they are
represented internally in uppercase letters, and the
symbols created by generate-entry probably won’t
be, so it’s unlikely that these constants will cause
any problems. If they do, it’s still possible to write
safety routines to take care of them.

3.4.1. Generating the entries. The name,
heading and subheading arguments to generate-entry
are all strings and undergo some manipulation
before they are used as the names of Lisp
symbols. Therefore, some characters may appear in
arguments to \indexentry which would normally
cause problems in Lisp, for instance, an index entry
like “Lincoln, ,Abraham” is legal, whereas commas
and spaces may not normally appear in symbol
names in Lisp. If there is no heading argument, the
entry is a heading, and the name of the symbol is
name. If heading (but not subheading) is non-empty,
the entry is a subheading, and heading and name
are joined with a hyphen: heading-name. If heading
and subheading are both non-empty, the entry is a
subsubheading, and heading, subheading and name
are joined with a hyphen, e.g.,

\indexentry{transitiveH{{}{}{verbs}{}
maps to the symbol name
| verbs-transitive |

and

265

\indexentry{activeH}I{}{}{verbsl}/
{transitive}

maps to the symbol name |verbs-transitive-active|.

The use of || surrounding the symbol name in
spindex.lsp is independent of the use of || to
delimit special character codings in \indexentry’s
arguments. In Lisp, |{characters) | has the effect
of escaping all of the characters inside ||, so
that characters can be used in the name of a
Lisp symbol that would normally not be allowed.
This also makes it possible to have symbol names
with lowercase letters. Lisp normally ignores case
and converts lowercase letters in symbol names
to uppercase letters internally. But this would
mean that

\indexentry{a}{a (the letter a)}{}{}{}{}
and
\indexentry{A}{A (the letter A)}{}{}{}

would map to the same Lisp symbol and therefore
not create two different entries, and the text “A
(the letter A)” would be ignored, because text is
only used when an entry is created, as explained
above. So all lowercase letters are escaped as well
as space, comma, and indeed everything except for
uppercase letters, which are not escaped, and {
and }, which are ignored.? However, this special
meaning of | in Lisp means that an index entry for
“pat” and one for “that”, created by

\indexentry{|th|at}H}I{F{F{3{}

and
\indexentry{that}{}{I{}{}{}

would both map to a Lisp symbol called |that],
since the | | in |thlat would be interpreted by Lisp
simply as escape characters. In order to prevent
this, || in an \indexentry are converted to |[!
and !| so that the two invocations of \indexentry
above map to two different symbols, |!thlat| and
[that|. The exclamation points have no effect on
alphabetization or on the output to index.tex,
since sorting and output both use the original,
unconverted name argument.

Now generate-entry accesses the symbol (using
read-from-string) and checks to see if it’s bound. If
it isn’t, it means that this is the first occurrence of
this entry. In this case, a structure of type “entry”
(defined by defstruct entry) with the slots name,

2 The way characters or groups of characters are
handled can be modified according to the user’s
requirements.

266

text, sort-string, page-nums, cross-refs, cross-ref-cons,
subheadings and subsubheadings is created and the
symbol is bound to it. The information in generate-
entry’s other arguments is stored in the appropriate
slots. If the symbol is bound, i.e., the entry
already exists, the page number and cross-reference
information in generate-entry’s arguments may be
added to the appropriate slots in the structure,
unless it’s already there due to previous invocations
of \indexentry.

It’s easier to “fake” an index using the function
generate-entry than it is to use a dummy input file.
If one wants to type in the code for invocations of
generate-entry, there’s no need to use \indexentry
at all, for instance, to make an index for a book
that’s already been printed or that’s not made
using TEX. In this case, it would make sense to
redefine generate-entry so that it could take lists of
strings and integers for its cross-ref and page-num
keyword arguments. Then generate-entry need only
be invoked once for each entry.

3.4.2. The sort strings. The name argument
is used to make a string to be stored in the sort-
string slot of the entry structure. This is what
makes it possible for Spindex to alphabetize special
characters.

Lisp’s sorting routine for characters and strings,
like C’s and UNIX’ sorting routines, can sort the 256
characters of an 8-bit character encoding according
to a code table based on the ASCII code table.
For sorting strings using only English words this is
adequate, but most of the special characters likely to
appear in an index do not appear in the ASCII code
table (or in Lisp’s), and most of the characters that
do appear in the code table are unlikely to appear in
an index. Since uppercase letters (positions 65-90)
and lowercase letters (positions 97-122) are treated
identically for purposes of alphabetization, and it
makes no sense to sort numerals or punctuation
marks according to their position in the code table,
only 26 positions are relevant and 229 are wasted.

Spindex makes it possible to use all 256
positions, or as many of them as necessary, by
assigning integer values to a set of variables, i.e.,
a-value = 1, b-value = 2, etc. Each letter or special
character is associated with a list of one or more
of these values. The characters a, b and b are
associated with the lists (a-value), (b-value) and
(thorn-value) respectively On the other hand, in
some languages the ligature “a&” is treated as “ae”,
so it’s associated with the list (a-value e-value). This

TUGDboat, Volume 18 (1997), No. 4

is the reason for associating characters with lists
rather than single integers.3

Some characters should be sorted as if they were
other characters. All of the uppercase characters
should be treated the same as their corresponding
lowercase characters, and in some styles of alpha-
betization “4”, “a”, “a”, etc. should be treated like
“a”, so that the list associated with “4” (coded as
\’ain TEX and |’al in \indexentry) should be (a-
value). On the other hand, in Icelandic, “4” follows
a in the alphabet (likewise for the other vowels), so
“a” would need to have a unique value aacute-value
such that a-value < aacute-value < b-value. While
spindex.1lsp can assign integer values only from 0
to 255, in practice many more characters can be
accommodated, because some characters receive the
same values and others use combinations of values
assigned to other characters.

The string which was the name argument to
\indexentry is read character by character, except
that a | causes everything up to the next | (a
special coding) to be treated as a unit. The func-
tion letter-function returns lists of integers to the
function generate-info, which creates a new string
using the characters from the code table that have
these values. So, the sort-string for an \indexentry
“nouns” might look like ""P"Q"W"P"U" (consisting
of non-printing characters in Lisp’s printed repre-
sentation). It doesn’t matter what the sort-string
looks like because the user never even needs to know
it exists, and the characters which are assigned will
vary according to the content of the character list
described on page 260. The sort-string for “transi-
tive” might look like

"VTTAPTU
"V
“X°F"
where i-value is assigned the integer 10

corresponding to the newline character, as in Fig. 1.
The function set-char-values keeps track of how
many there are and signals an error if they exceed
256. Spindex can be made to perform alphabetical
sorting for languages using non-Latin alphabets if
the user makes an appropriate list, or an index can

3 Tt would be possible to change the indexing
program so that the characters could be associated
either with a single integer or a list of integers.
If I revise spindex.1lsp I will probably make this
change, but only for aesthetic reasons.

TUGboat, Volume 18 (1997), No. 4

be reversed or scrambled by changing the order of
the characters (if anyone wanted to do this).

After the sort string has been generated, it is
stored in the entry structure’s sort-string slot. Then
generate-entry makes a cons cell and puts the sort
string into the car and the symbol itself into the
cdr.

\indexentry{verbs}{}{}{}{3{}
=

(" X"F*T"B"U" . [verbsl)
If the entry is a heading, this cons cell is put into an
association list, or alist, called sort-list. If the entry
is a subheading, the cons cell is put into an alist in
the subheadings slot of the heading entry of which it
is a subheading;; if it’s a subsubheading, it’s put into
an alist in the subsubheadings slot of the subheading
entry of which it is a subsubheading. Got that?4

If a subheading is created before its heading
exists, e.g.,

\indexentry{transitive}{}{}{}{verbs}{}
without a preceding

\indexentry{verbs}{}{}{}{}{}

|verbs| must be created in order for |verbs-
transitive| to be stored with its sort string in
| verbs|’s subheadings slot. This is accomplished by
means of a recursive call to generate-entry. If

\indexentry{active}{HIH{I{verbs}/
{transitive}

is invoked before
\indexentry{transitive}{}{}{}{verbs}{}

| verbs-transitive| is generated by a recursive call to
generate-entry, and |verbs|, too, if it doesn’t exist
already. The page number is suppressed for entries
that are generated automatically in this way, and
there is no way to specify a text for them. This
is another reason for putting dummy entries at the
beginning of your input file for specifying texts.
3.4.3. Page numbers. By default, the macro
\indexentry writes the page numbers to the file
entries.lsp. When an entry is created, if the
page number has not been suppressed, a list
containing the page number is stored in the entry
structure’s page-nums slot. For each additional call
to \indexentry the page number (if it hasn’t been
suppressed) is simply added onto the list, unless

4 The subsubheading slot of a heading entry, the
subheading slot of a subheading, and both of these
slots in a subsubheading will always be nil.

267

that page number is already in the list due to a
previous invocation of \indexentry on that page.
It would be possible to change this in order to keep
track of the number of occurrences per page. This is
unnecessary for an index, but it might be useful for
some other application. Usually, the page numbers
will occur in order in the page number list, however,
spindex.1sp sorts the list before writing the page
numbers to index . tex, so they will be in the correct
order even if the user explicitly changes the page
number in the input file with \pageno=(integer) in
such a way that the pages are numbered out of
order.

3.4.4. Cross-references. A cross-reference
(argument #4 to \indexentry) can refer to another
entry (at any level) or it can be an arbitrary string.
Whichever it is, it is stored as is (the string is
not converted) in a list with all the other cross-
references for this entry in the cross-refs slot of the
entry structure.

When a heading entry is first created, its text
argument (or if text is empty, its name argument)
is used to make a cons cell that is stored in that
entry’s cross-ref-cons slot. This is used when this
entry is used as a cross-reference in another entry.
A subheading entry uses a string consisting of the
text or name of its heading, a comma, a space, and
its own text or name. A subsubheading entry uses a
string consisting of the text or name of its heading, a
comma, a space, the text or name of its subheading,
a comma, a space, and its own text or name. This
string is stored in the cdr of the cons cell, and given
to generate-info, which returns a sort-string, which
is stored in the car of the cons cell. Cross-references,
unlike entries, are always alphabetized according to
what is actually printed.

An index entry is illustrated in Fig. 1.

3.4.5. Output. After spindex.1sp has loaded
the file entries.1lsp, it puts the cons cells in sort-
list (the alist containing the heading entries) into
alphabetical order according to their cars, i.e., the
sort-strings, with

(setq sort-list

(sort sort-list #’string<
‘key #7car))
Now the heading entries are in alphabetical order
and the function export-entries simply pops each
cons cell off of sort-list, evaluates the symbol in
the cdr to get the entry structure, extracts the
information for each entry and writes it to the TEX
file index.tex (as with entries.lsp, any name

TUGboat, Volume 18 (1997), No. 4

268

(.(e1usuodep 1dedxa) aAII0E ‘SAILISUBLY ‘SQUSA, © LV
Aeded.d .08 4.AD AN 4D 7040004 X0

[tu
s3uipeayqnsqns

ADY.D.4X,
A,
N.d.V.L.A.D.N.9.1L.4.X..,)

|lu |lu
sSuipeayqns SU0D-J24-5504 5J94-SS04D

.(erusuodsp 1dsoxe)

anoe,
WA Xo
(01 29) ANDYon 2AIDE,
swnu-a3ed 3unis-1ios %91 sweu

buppayqnsqng |anissed-sn1lsueI1-SqIIA|

bupDaYqNSQNG |SAI110B-IAIUSURIL-SAIIA|

s3uipeayqnsqns

(.enmsues ‘squan, * 4 X,

[tu
s3uipeayqnsqns

Ao =
Ned VoL AD. N9 Lod Xon) Ao
|ty |ty (96 26 2) N.d. V. L. As |tu SNisuedy,
sSuipesyqns SU0D-J24-5504D $J24-SS0ID swnu-a8ed Sulis-pios X391 sweu
|
”
| |
bupoayqng |snsueIIuI-SqIon| buipoayqng |sn1n1suesl-sqisA| buipvaygng |Aseiixne-sqian|
(.sqn, N8 L.4.X.0)
(|sunou| ||epow-squanpe]) (T10162€) .N.9.L.d.Xe It SQU3N,,
sSuipesyqns SU0D-J24-5504 $}91-550.0 swnu-sSed Sulis-pios X391 sweu

bupvafy |squan|

Fig. 1. A heading entry with sub- and subsubheadings.

TUGboat, Volume 18 (1997), No. 4

within reason can be chosen). Headings are not
indented, subheadings are indented to the value
of \parindent and subsubheadings are indented
to twice this value. The function generate-info
converts the text or name string of each entry into
TEX coding, which is written to index.tex. When
export-entries processes a heading entry, and the
subheading slot is non-nil, then the alist in the slot
is sorted and export-entries is called recursively. If
a subheading entry’s subsubheading slot is non-nil,
then the alist it contains is sorted and export-entries
is called recursively. If there are page numbers
associated with an entry, leaders are printed and
then the page numbers, separated by commas and
followed by a period. It is possible, if unusual,
that an \indexentry could appear in the front
matter, and that the page number would therefore
be negative. In this case, export-entries will cause
that page number to be printed as a lowercase
Roman numeral. If no page numbers are associated
with an entry, either because they have all been
suppressed, or because an entry was only generated
automatically by a sub- or subsubheading entry
and \indexentry was never called for it in its own
right, no leaders are printed. If there are page
numbers and cross-references, the cross-references
are printed on the following line, indented to the
same degree as the entry, preceded by the text “See
also”. If there are cross-references but no page
numbers, the cross-references are preceded by the
text “See”. If there are two cross-references, they
are separated by the word and. If there are more
than two, the final two are separated by the word
and and the others by a semi-colon. Of course, the
strings See, See also, and and can be changed for
books in languages other than English.

If an entry has no page numbers, no cross-
references and there are no sub- or subsubheadings,
a warning message is issued. Non-consecutive pages
are simply written to index.tex and separated by
commas. Page ranges are printed as the first and
last number in the range, separated by an en-dash
(=), whereby the last number may be abbreviated
according to the following scheme:

» Let a and b be integers such that 0 < a < b.
a and b represent the beginning and end of a
page range.

» If a < 102, b is not abbreviated: 1-9, 27-100.

» Else if |a/10%] = [b/102] and (b mod 102) > 10,
b is abbreviated to (bmod 10%): 100-12, 254—
99, 1104-29.

269

» Else if a > 103, |a/103] = [b/10%| and (b mod
10%) > 10%, b is abbreviated to (bmod
10%): 1003-125, 2006-194.

» Else if a > 10%, |a/10*| = |b/10*| and (b mod
10*) > 103, b is abbreviated to (bmod 10%):
10234-1045, 23245-5321.

And similarly for integer n > 5:

» If a > 10", |a/10"] = |b/10™] and (b mod
10™) > 10"~1, b is abbreviated to (b mod 10™),
up to b = TEX’s maximum legal integer
(The TEXbook, p. 118), namely 23! — 1 =
2147483647 = octal 17777777777 = hexadecimal
TFFFFFFF: 170234-81045, 1623245-935321,
2037892089-147483647.5

Otherwise b is not abbreviated: 102-109, 198-205,
1002-1009, 19052-21088. In particular, page ranges
with Roman numerals are never abbreviated: cv—
cxii, and page ranges starting with a Roman and
ending with an Arabic numeral are impossible. The
program in spindex.lsp also includes an option for
disabling abbreviation.

A possible improvement to Spindex would be to
allow page indications followed by ff, and underlined
and italic page numbers, as in The TEXbook and
The METAFONTbook. This would require changes
to \indexentry and spindex.lsp, but it wouldn’t
be too difficult. If there is sufficient interest, I
will program an option for different styles of page
numbering.

If there is more than one cross-reference, they
must be sorted alphabetically before they are
written to index.tex. The same technique is
used as for sorting the entries themselves. For an
arbitrary string, generate-info generates a sort-string
and puts it and the original string into a cons cell.
If the cross-reference refers to another entry, the
function do-cross-refs gets the cons cell stored in the
cross-ref-cons slot of that entry. All of the cons
cells are put into a list and sorted according to
their cars, i.e., their sort-strings. Then, their cdrs
(the original strings) are converted to normal TEX
coding by generate-info and written to index.tex.
If it’s an arbitrary string, a warning is issued, that
this cross-reference doesn’t correspond to an entry.

The formatting of index.tex depends on the
code written by spindex.1lsp on the one hand, and

5 Actually, the Lisp routine that performs the
abbreviation can abbreviate integers up to the
value of most-positive-long-float using the Gnu Lisp
interpreter. ~ On the computer I'm using, it’s
1.7977 % 10308,

270

on the TEX format used on the other. None of the
formatting is hard-wired into the program. The
index file can be a complete TEX input file, it can
input other TEX files, or it can be input by another
TEX file. If the TEX code written to index.tex
is formulated in a general way, and parameters are
set and macros defined in another file, then the
same index.tex can produce output according to
a wide range of different formats without making
any changes to the Lisp program. However, it’s not
difficult to change the TEX code written by export-
entries, if the user prefers to do the formatting this
way. I do not recommend changing the routines
for the page numbers and cross-references, though,
unless you know what you’re doing.

3.5. Fine points of alphabetization. The
function set-char-values assigns values to characters
> 1 and < 256. There are, however, two other
possible values, nil and 0. If a character is assigned
a value of nil, nothing is added to the sort-string and
it is ignored for purposes of alphabetization. The
value 0 acts as a word separator and is assigned
to . This corresponds to one style of alphabet-
ization, namely alphabetization by word, so that
an entry “abc xyz” will appear before an entry
“abedef”. If nil is assigned to ., then the entries
will be alphabetized by letter and spaces will be
ignored, so “abcdef” will appear before “abc xyz”.
Other characters, like hyphen, can also act as word
separators by assigning them the value 0 (in this
case, it’s necessary to be careful with em- and
en-dashes in arguments to \indexentry). Codings
using || that contain only hyphens and/or spaces
(and contain at least one character), are valid and
are assigned the value nil, so they can be used
when the hyphens and spaces shouldn’t act as word
separators. The coding [tiel is for a ~ that is
assigned the value 0 and therefore acts as a word
separator. |tie-nil| is the coding for a ~ that
does not act as a word separator. Characters
like $, *, {, }, 2, 1, 5, ., :, etc. are assigned the
value nil, so they can appear in index entries and
do not affect alphabetization. Some codings, like
control sequences for font switching or formatting,
can also be assigned the value nil, so that the |it]|
in \indexentry{{lit|abc}}HIHI{I{}{} does not
affect alphabetization. Curly braces in an argument
are ignored both for purposes of alphabetization
and for accessing symbols, so that {abc} and abc
will map to the same symbol. The coding |itl|abc
will also map to the same symbol as {|it|abc}, but
the former should not be used because the switch
to italic will be global in index.tex. Likewise, the

TUGDboat, Volume 18 (1997), No. 4

user should not type {litl_, abc} because spaces,
even spaces following control sequences, are not
ignored for purposes of alphabetization (unless |,
is assigned the value nil), and {|itl|, zzz} would
appear in the index before {|it|abc}.

Since some characters are assigned the same
values, it’s possible for entries that print differently
to have identical sort-strings. The two entries

\indexentry{a}{a (the letter a)}{}{}{}{}
and

\indexentry{A}{A (the letter A)}{}{}{}{}

will have identical sort-strings, namely ""A"
(assuming a-value = 1). It is impossible to ensure
that lowercase letters will always be sorted before
or after uppercase letters in situations like this. The
order of these entries in the index will be determined
by which of them appeared first in the input file. To
ensure a particular order of entries of this type (and
to ensure that a text argument is not ignored) it is
safest to use dummy \indexentrys with suppressed
page numbers at the beginning of the input file.
Indexes generally do not need to do numerical
sorting. If the numerals are all assigned the value nil
in letter-function, then entries that differ only with
respect to the numerals contained in their names
can be put into order by using dummy entries at the
beginning of the input file. However, if a particular
application requires it, it should be possible to write
a routine that will perform true numerical sorting.

3.6. Some limitations. In its current form, Spin-
dex allows three levels of nesting. It is not
considered correct form for indexes to have deeper
nesting than this, however, it might be desirable
for a special purpose, not necessarily for an index.
Spindex could be adapted for deeper nesting by
adding an argument for each level to \indexentry.
However, \indexentry already has 6 arguments,
and it might be desirable to use the remaining three
arguments for some other purpose. It is possible to
get around TEX’s limit of 9 arguments to a macro,
but it’s easier if one doesn’t have to. Macros with
lots of arguments encourage typing mistakes and
make the input file difficult to read. Modifying
spindex.1lsp would be less of a problem; for each
additional level of nesting the entry structures
would need an additional slot, and export-entries
would need to be called recursively that many more
times.

It would be easy to remove the limitation to
256 positions for alphabetical sorting. Let n be
an integer such that n > 0 and let o be the set
of characters processed by set-char-function. Each

TUGboat, Volume 18 (1997), No. 4

character € « is associated with a single position
and assigned a list of n integers. Let [be the set
of legal characters ¢ o which are assigned lists of
n integers, such that each character € 3 shares a
position with a character € a. Let v be the set
of legal characters which are assigned nil. These
characters are ignored for purposes of alphabeti-
zation, i.e., they are associated with no position.
Let & be the set of legal characters which are
associated with lists of integers of length > n. The
lists assigned to the characters € § may differ in
length. For each character d € §, let the length
of its list be lg such that l; is a multiple of n.
Then, each character d € § will be associated with x
positions such that x = lg/n. Let A= aUBU~yUJ.
Thus A is the set of legal characters. A string S
of length lg consisting of characters in A will be
associated with y positions where y is the sum of the
positions associated with the individual characters
in S. Let Z be the sort string derived from S
and [z its length. Then Iz = y *xn. Let p be the
number of available positions, then p = 256™. As n
increases arithmetically, [z increases geometrically
and p increases exponentially. If n = 2, p = 2562 =
65,536, and for n = 3, p = 2563 = 16,777,216. In
this way, Spindex can theoretically accommodate
infinitely many positions, however, I suspect that
increasing n too much would soon cause the Lisp
program to run very slowly and eventually exhaust
the capacity of the computer.

In the format I wuse, when \drafttrue,
\indexentry causes a marginal hack to be printed
next to the line where \indexentry appeared in
the input file. The marginal hack is printed in the
typewriter font cmtt10, so an \indexentry with | |
like

\indexentry{|th|is}{}I{IH{I{3{}

will produce a marginal hack like [thlis. If I
change the font to roman (cmr10), the marginal
hack will look like —th—is, because the character
— is in same position in cmr10 as | is in cmtt10
("7C). So I'm limited to using a typewriter font
if I want my marginal hacks to look right. Also,
two \indexentrys on one line will cause the second
marginal hack to overwrite the first, causing an
unsightly mess. Fixing this would be so complicated
that I've decided not to bother, since it’s only for
rough drafts anyway, and a single line will rarely
have multiple invocations of \indexentry (except
for dummy entries). I'd probably have to define a
new class of insertions and I'm not sure it would be
possible to get the marginal hacks lined up properly.

271

Another limitation is that the user can’t use
normal TEX coding for the special characters and
other control sequences in \indexentry. Using ||
has advantages, but it would be nice to be able to
use normal TEX coding, too.

It is possible to fix this problem, and to have
the marginal hack printed in roman type, but the
benefit does not justify the increased complexity of
\indexentry’s definition. However, the solution
may be interesting and useful for some other
purpose.

To simplify matters, I will use the macro \next
to illustrate. The following facts are involved:

1. | is an ordinary character, \catcode = 12.

2. \write will expand macros like \"o, \th,
\it, the active character ~, and other active
characters like = if such are defined, and put a
space after each unexpanded macro, like \oe.

3. Changing the \catcode of a character used in
an argument to a macro has no effect on that
character once it’s been read and tokenized.

4. \write is not executed immediately. It is put
into a whatsit and expansion takes place upon
\shipout. The macros in the text written
by \write are therefore expanded according
to the definitions in force at the time of the
\shipout, not when \write is invoked (The
TEXbook p. 227).

5. A delayed \write must be used (not an
\immediate\write) in order to write the page
number to the opened file.

The problems can be solved in the following way:
. %%%h% This is next.tex
. \newwrite\nextout

. \immediate\openout\nextout=next.output
. \newlinechar=‘\""J

. \def\verticalstroke{|}
. \def\foo{foo outside}

. \catcode‘\|=\active
.\let|=\verticalstroke

= e e

. \def\next{\begingroup

. \def\foo{foo inside \noexpand\next}

. \def |{vertical inside \noexpand\next}

. \catcode‘\|=\active

. \def\subnext##1##2{J,

. \immediate\write\nextouty

.{This is argl inside \noexpand\subnext,
. ~"J but outside the group:~"J##1}

. \immediate\write\nextouty

.{This is arg2 inside \noexpand\subnext,
.""J but outside the group:~~J##2}

. \begingroup

. \def\foo{foo insidel}/,

NN NN NN~ E ===
G W N H O © 00 3 O Ut kx

272

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
. %% from being written to \nextout
62.
63.

61

\def |{vertical insidel}%
\immediate\write\nextout{This is arg 1
inside \noexpand\subnext, "J
and inside the group:~~J##11}),
\immediate\write\nextout{This is arg 2
inside \noexpand\subnext,”"J
and inside the group:~ " J##21},

N
\write\nextout{This is arg 1 at
\noexpand\shipout:~"J
##13},
\write\nextout{This is arg 2 at
\noexpand\shipout:~"J
##21}7,
%% This is for a delayed write of
%% the local definitions of the macros
%% to \nextout
\edef\anext{\write\nextout{~"J/
This is arg 1 at
\noexpand\shipout,~"J
but with the local definition:""J
##11}
\anext

at \noexpand\shipout,~"J
but with the local definition:""J
##2} 1},
\anext
\write\nextout{""JThis is \noexpand
\catcode\noexpand ‘\noexpand\| :
\the\catcode‘\|}%
%% This works
\endgroup\endgroup}%
\subnext}
%% This keeps <macro name> inside \next

%%\endgroupl}’,
%%k\expandafter\endgroup\subnext}

64.

65.

\catcode‘\ =12

66.

67.

\next{|}{\foo}

68.

69.

\closeout\nextout

70.

71.

This

\end

writes the following text to the

next.output

This is argl inside \subnext ,
but outside the group:
vertical inside \next

This is arg2 inside \subnext ,
but outside the group:

foo inside \next

This is arg 1 inside \subnext ,
and inside the group:
vertical inside

This is arg 2 inside \subnext ,
and inside the group:

\edef\anext{\write\nextout{This is arg 2

file

TUGboat, Volume 18 (1997), No. 4

foo inside

This is arg 1 at \shipout :
|

This is arg 2 at \shipout :
foo outside

This is arg 1 at \shipout ,

but with the local definition:
vertical inside
This is arg 2 at \shipout ,

but with the local definition:
foo inside

This is \catcode ‘\|: 12

The \catcode of | must be set to \active outside
the definition of \next, so that \defl|{...} will
not cause an error. It is set back to 12 (other)
after the definition of \next. Here, \subnext is
defined inside of \next, but that isn’t necessary;
it could be defined outside of it, as long as
\catcode‘\|=\active when \subnext is defined.

What appear to be arguments to \next in line
67 actually are not. Rather, they are arguments to
\subnext, which therefore must be the last thing in
the definition of \next before the closing }.

Before \subnext reads its arguments, \next
changes the \catcode of | to \active, so it can be
defined as a macro. In this example, | first expands
to vertical inside \next and then to vertical
inside when \subnext is expanded. It could also
be made to expand to \vert for a marginal
hack, or anything else. At \shipout, though, it
expands to |, i.e., the character |. The definition
\def\verticalstroke in line 7 is necessary to
make this possible: because \catcode‘\|=\active
\def [{|} will cause infinite recursion when TEX
tries to expand |. The definition \def |{~~7C} will
also fail, because ~~7C and | are equivalent. The
| in the \write command was active when it was
tokenized, so it is expanded upon \shipout using
its global definition, even though | is no longer
active at this time.

Following this, in lines 40-53, delayed \writes
are performed using the local definition of | and
\foo. This is accomplished by a trick explained in
the answer to Exercise 21.10 of The TEXbook:

\edef\anext{\write\nextout{##1}}
\anext

(a simplified version of the code in line 43-48),
causes | to be expanded within the definition of
\anext, before the \write command is put into its
whatsit. It is, however, necessary to redefine \anext

TUGboat, Volume 18 (1997), No. 4

for each argument that is to be written to \nextout.
Even by taking the definition of \subnext out of
\next (this possibility is mentioned above), which
would allow the use of arguments in \anext’s
definition (arguments to macros whose definitions
are as deeply nested as the definition of \anext
is here are not possible, since TEX does not allow
parameters like ###1), and writing

\edef\anext##1{{\write\nextout{##13}1}/
\anext#1
\anext#2
\anext#3

won’t work—vertical outside and foo outside
will be written to \nextout, apparently because the
local definitions of | and \foo are not accessible
inside of \anext, but I really don’t know the reason.

Macros need not be redefined before the
arguments are read. By wusing grouping, it’s
possible to have \subnext expand the macros in
three different ways (or as many as TEX’s memory
allows), depending on the time of expansion, as
in the example above. However, if delayed
\write commands are used, and the token lists
are not expanded beforehand using an \edef, it is
important to make sure that all macros in the text
to be written are defined at the time of \shipout.
If a macro is only defined within a group, and
the group has ended when \shipout occurs, it will
cause an “undefined control sequence” error.

The group begun in \next ends at the end of
\subnext. If \endgroup was placed after \subnext
is called at the end of \next, it would be interpreted
as \subnext’s first argument. It also doesn’t work
to write \expandafter\endgroup\subnext in line
59 (and remove one of the \endgroups in line 58).
This will have the effect that vertical inside
\next and foo inside \next are never printed
to next.output, since these definitions will be
inaccessible to \subnext. I admit, I don’t know
why this is. It seems that TEX temporarily “forgets”
it’s in this group while it’s expanding \subnext.

4. Final remarks

Spindex runs TEX on an input file which writes
information to a file of Lisp code. A Lisp program
inputs this file and writes another TEX file. This is
only one possibility of using TEX and an auxiliary
program in combination. Spindex needs to run
TEX initially in order to generate page number
information by means of TEX’s output routine.
This may not be necessary for other applications,
so another auxiliary program might operate directly
on the TEX input file. Another possibility is storing

273

data in files of Lisp code and using a Lisp program
to generate TEX input files. Of course, auxiliary
programs can be written in other languages, like C,
Fortran, Pascal, etc.

Auxiliary programs like Spindex depend on the
fact that TEX input files are ASCII files. The
value of this feature of TEX doesn’t seem to be
recognized as much as it ought to be. It would
be impossible, or at the very least impractical, for
an amateur (like me) to implement an indexing
program for a word-processing package that stores
its typesetting data in a format that people can’t
read. The trend in software is clearly in favor
of menu-driven, point-and-shoot programs with
colorful graphics and sound effects. While programs
of this sort are superficially easier to use than
packages like TEX and METAFONT, they discourage
creativity on the part of the user, at least with
respect to programming extensions to the programs
themselves.

IATEX presents a similar problem. The more
macros you use, the more likely it is that
a macro you write will cause an unforeseen
problem, especially if you don’t understand how
the macros you're using work. Large packages offer
functionality, which is not always needed, and you
pay for it with increased run-time and a loss of
flexibility. I used IATEX when I first started writing
auxiliary programs, but I found that I spent most
of my time trying to make it stop doing things that
I didn’t want. For this reason (among others), I
recommend using plain TEX, and the other formats
and macros documented in The TEXbook, as the
basis for programming extensions to TEX.

I've used some of the other possible
combinations of TEX and auxiliary programs in
other packages, which I plan to document in sub-
sequent articles. Many of the techniques described
in this article are of general applicability, not just
for indexing. I hope that Spindex may inspire other
TEX users to try writing an auxiliary program of
their own.

¢ Laurence Finston
Skandinavisches Seminar
Georg-August-Universitat
Humboldtallee 13
D-37073 Gottingen
Germany
lfinstol@gwdg.de

