
246 TUGboat, Volume 18 (1997), No. 4

Hints and Tricks

‘Hey — It Works! ’

Jeremy Gibbons

Welcome to Hey — it Works!. This column is
devoted to interesting, elegant or just surprising tips
and tricks for (LA)TEX. The title has two interpre-
tations: surprise — ‘well, bless my cotton socks, it
actually works!’ — and pragmatism — ‘don’t knock
it, it does the trick’. Articles fitting either inter-
pretation are welcome, whether arcane wizardry or
simple but useful techniques; the overriding criterion
is brevity and elegance.

This column ran in TEX and TUG News until
the demise of that newsletter in 1995. Barbara
Beeton has kindly agreed to continue it in TUGboat,
which has absorbed the newsletter. During the
intervening period, I have moved from New Zealand
to the UK. I have also collected all back-issues of the
column since I took it over from Christina Thiele in
1993, and made them available through the URL

http://www.brookes.ac.uk/~p0071749/hiw/

In this issue we have three contributions. Don-
ald Arseneau, as ever, has a nice piece showing how
to remove a counter from the list of counters to be
reset at the start of each section-like unit in LATEX;
this is more difficult than adding a counter, but



TUGboat, Volume 18 (1997), No. 4 247

Donald presents a very elegant solution. Ramón
Casares shows how to change the default thickness
for \hrules and \vrules from the standard hard-
wired 0.4pt. The final article is by yours truly, and
explains how to define a ‘small verbatim’ environ-
ment, as used in this column.

� Jeremy Gibbons
School of Computing and

Mathematical Sciences
Oxford Brookes University
Gipsy Lane, Headington
Oxford, OX3 0BP, UK
jgibbons@brookes.ac.uk

URL: http://www.brookes.ac.uk/

~p0071749/

1 Removing a counter from a reset list

By default, the LATEX report and book classes reset
equation and other numbers at the start of each
chapter, but once I needed to number equations (fig-
ures, etc.) sequentially throughout a report. I could
have created an entire document class (copying from
report.cls) but with the counters defined differ-
ently, reducing \newcounter{equation}[chapter]
to just \newcounter{equation}, and likewise for
other counters. That’s a bit ridiculous, though,
when it is the only change I want to make! What is
more convenient is to remove the counter resets.

LATEX keeps the list of counters that are to be
reset with each section-like 〈unit〉 (where 〈unit〉 is
“chapter,” “section,” etc.) in the macro \cl@〈unit〉.
Clearly, what I needed was to remove the equation
counter from the list \cl@chapter. There is a
simple (internal) LATEX macro called \@addtoreset
to add a counter to this list, but there is none for
removal; so I wrote one of the form

\@removefromreset{equation}{chapter}

Johannes Braams wrote on this topic in TUGboat
Vol. 15 (Dec. 1994, p. 496) and explains the func-
tioning of the reset list, but his solution is more com-
plex than necessary, with nested looping, whereas
the following definition efficiently redefines the list
in a single scan.

\def\@removefromreset#1#2{%

% preserve \@elt (probably unnecessary)

\let\@tempb\@elt

% put what we want to remove in \@tempa:

\expandafter\let\expandafter\@tempa

\csname c@#1\endcsname

% define \@elt to check for removal:

\def\@elt##1{\expandafter\ifx

\csname c@##1\endcsname\@tempa\else

% else, reinsert without execution:

\noexpand\@elt{##1}\fi}%

% redefine list as itself with removal:

\expandafter\protected@edef

\csname cl@#2\endcsname

{\csname cl@#2\endcsname}%

% restore \@elt

\let\@elt\@tempb}

How does this work? The list \cl@〈unit〉 is a
sequence of commands of the form \@elt{〈ctr〉},
one for each counter 〈ctr〉 (equation, e.g.) to be reset
at the start of each 〈unit〉 (chapter). The command
\@removefromreset{equation}{chapter} tempo-
rarily defines \@elt{equation} to disappear (i.e.,
to expand to nothing) but \@elt{section} to re-
main unchanged (i.e., to expand to itself). Then
\cl@chapter is simply defined as itself, with these
definitions in effect!

When numbering in a continuous sequence, I
don’t like the chapter number as a prefix to the equa-
tion numbers, so I redefine the equation numbering
with

\def\theequation{\arabic{equation}}

\@removefromreset{equation}{chapter}

along with removals for the figure and table coun-
ters, if desired. These lines and the definition
of \@removefromreset should be put in a style
file. The definition of \@removefromreset is on
CTAN in the file macros/latex/contrib/other/
fragments/removefr.tex, which you should copy
into any local .sty or .cls file where you would
like to use \@removefromreset.

� Donald Arseneau
TRIUMF
4004 Wesbrook Mall,
Vancouver B.C.
Canada V6T 2A3
asnd@reg.triumf.ca

2 Default Rule Thickness

Sometimes the default rule thickness, 0.4pt, is not
the one you need. The solution is to write, for ex-
ample, \vrule width 1pt instead of \vrule. But
this does not work if the \vrules are hidden inside
macros you do not want to modify. When I was
in such a situation my first reaction was to look
for a 〈dimen parameter〉 in The TEXbook, p. 274.
As usual in these cases, I saw some parameters
I had never imagined, but nothing resembling the
\rulethickness I needed1.

Fortunately in TEX (almost) everything can be
done.
\let\oldhrule=\hrule

1 There is a \fontdimen in maths fonts controlling default
rule thickness, but that applies only to rules in maths mode.
–jg



248 TUGboat, Volume 18 (1997), No. 4

\let\oldvrule=\vrule

\def\rulethickness{\afterassignment

\dorulethickness\dimen0 }

\def\dorulethickness{\edef\hrule

{\oldhrule height\dimen0 }%

\edef\vrule

{\oldvrule width\dimen0 }}

From now on a declaration as \rulethickness=1pt
makes the default thickness of all rules equal to 1pt.
The next line is an example of a 1pt \hrule.

Note that now, if you want a 0.4pt rule you
have to write \vrule width 0.4pt as expected.
Note also that you could omit the ‘=’ in the assign-
ment; \rulethickness 1pt or \rulethickness1pt
are also valid.

� Ramón Casares
Telefónica de España
rcg@tid.es

3 Small verbatim material

In order to keep verbatim material (such as the code
for macros in this column, or example programs
on OHP slides) to a reasonable length, it is often
desirable to set it in \small size rather than the
normal size. What you can’t do to achieve this is to
define a smallverbatim environment by

\newenvironment{smallverbatim}

{\small\verbatim}{\endverbatim}

— an approach that would work if the task were
instead to define, say, a ‘small quotation environ-
ment’. The verbatim environment is a strange
beast, quite unlike other environments; it is not
ended by ‘executing’ \end{...} as other environ-
ments are, but rather by finding exactly the 14 char-
acters ‘\end{verbatim}’ in the file. Finding a
macro that expands to these characters is not enough.
(The perils of macro expansion languages!)

One apparent solution is to forgo the specialized
environment, and do it manually each time:

Here is the previous paragraph.

\begin{small}\begin{verbatim}

Verbatim material.

\end{verbatim}\end{small}

Here is the next paragraph.

Unfortunately, this doesn’t work well. By the time
the \begin{verbatim}has ended the previous para-
graph, the size has already been set to \small
and the \baselineskip reduced accordingly; the
result is that the entire previous paragraph gets set
with too little leading. Here is an example, using
\scriptsize verbatim and a paragraph without
ascenders or descenders to emphasize the effect:

here is the previous paragraph. here is the
previous paragraph. here is the previous
paragraph.
Here is some

verbatim material.

here is the next paragraph. here is
the next paragraph. here is the next
paragraph.

If you look carefully, you will find many published
papers and books exhibiting this problem.

You could avoid this scrunching up by leaving
a blank line (or a \par) before the \begin{small},
thereby ending the previous paragraph before the
size change. However, it is all too easy to forget that
blank line, making the document rather fragile (a
blank line before a verbatim environment appears
to be ignored under normal circumstances). A
better solution than this is needed.

For the earlier editions of this column, which
appeared in TEX and TUG News and used the old
LATEX 2.09, I had to resort to writing my own en-
vironment, mimicking the standard verbatim envi-
ronment but changing to small size between ending
the previous paragraph and starting the verbatim
material. However, LATEX 2ε provides a very con-
venient hook for just such a change: the macro
\verbatim@font. The default definition is

\def\verbatim@font{\normalfont\ttfamily}

but you can make all your verbatim material small
by replacing the \normalfont by \small. This,
however, has the unfortunate side effect of making
\verb material also appear small, which may not
be what you want. An effective solution can be
obtained by redefining the verbatim environment so
that it changes \verbatim@font just for that single
instance of the environment:

\let\VERBATIM\verbatim

\def\verbatim{%

\def\verbatim@font{\small\ttfamily}%

\VERBATIM}

which is what I have done for this column.

� Jeremy Gibbons
Oxford Brookes University
jgibbons@brookes.ac.uk


