
NTS: a New Typesetting System

Karel Skoupý
Faculty of Informatics
Botanická 68a
602 00 Brno, Czech Republic
Phone: +420-5-752-040
skoupy@informatics.muni.cz

Abstract

NTS represents one possible radical approach to the idea of making a successor
for TEX. Its underlying them is the complete re-implementation of TEX: The
Program in Java. The first version will be compatible with TEX but the struc-
ture of the new program will be as open and modular as possible. At the time
when TEX: The Program was written, computer performance and programming
technology were very limited in comparison with today. Object orientation and
the many other modern features of Java will make many problems easier to solve
and will allow for far greater generality. Polymorphic objects will handle different
font or output formats directly without affecting the rest of the system. The new
implementation will provide a platform on which further experimentation can be
conducted; such experimentation may aim, for example, to improve typographic
quality (e.g. page break optimization) and/or facilitate integration with other
systems.

When considering the future of TEX and its po-
tential successor(s), there were five options available
[9]. They ranged from the most conservative — to
leave TEX exactly as it is — to the most radical — to
design quite a new typesetting system for the next
century. The NTS project started with a relatively
conservative approach to add some extensions and
enhancements to the current TEX which resulted in
ε-TEX. It was agreed that the design of a new sys-
tem from scratch is worthy but it had to be post-
poned until the NTS project had adequate financial
resources.

The funds allocated to the NTS project by
DANTE e.V. enabled the radical approach to NTS
to get off the ground. The first meeting of the NTS
group was held in Zeuthen (during a regular DANTE

meeting) between October 8–11 1997. Although the
current author (who was to be employed as a full-
time programmer) was busy with another project, it
was planned that he could start work on NTS near
the beginning of 1998. It of course did not prevent
the working group from thinking about the problem.

Fundamental Desiderata

It had been already decided that NTS should not be
designed from scratch entirely — TEX: The Program
(or more precisely ε-TEX) was chosen as the starting
point. What had to be done from scratch was a com-

plete re-implementation. Such a re-implementation
has to be compatible with current TEX, and ideally
it should pass the TRIP test (unless there are really
good reasons for not passing it). This constraint
has its advantages. As TEX is considered (by the
working group) to be the best typesetting system
on the world, compatibility will prove that NTS is
at least as good as its predecessor. Also TEX: The
Program is an extremely well designed application
full of inspiring ideas and it would not be wise to
drop them.

On the other hand the structure of the new sys-
tem should be made as open as possible. It should
be partitioned into relatively independent modules
with well defined interface. It will eventually al-
low for great changes by only local intervention to a
particular module without affecting the rest of the
system. Although the functionality will be compat-
ible with TEX, both the structure of the program
and the data structures should be ready for such a
changes and extensions that are likely to be desir-
able for NTS (Properties of a potential new type-
setting system were discussed in [7, 3, 2]). For this
purpose an object oriented design seemed to be the
most suitable.

Implementation language The first task of the
group was to choose a programming language for
the implementation. Several high level languages

318 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting



NTS: a New Typesetting System

for fast prototyping had been taken into account in
the past. Eventually three well known object ori-
ented languages were considered: Common Lisp Ob-
ject System (CLOS), C++ and Java. Although each
of these languages has its specific advantages, after
careful comparison of them Java was chosen.

Some of its characteristics follow. Java as the
youngest of these languages could learn from them.
It has a very advanced implementation of objects
and their interfaces are orthogonal to the class hi-
erarchy. Classes are compiled into so-called byte
code and can be dynamically combined at run time.
The built in garbage collector is very convenient and
prevents the programmer from causing many mem-
ory violation errors. Types and their checking can
also catch many errors, from trivial to serious. Ex-
ception handling requires precise declarations which
prevent forgetting of boundary situations. Java is
completely portable even at the level of compiled
byte code. Although the standard interpretation by
the Java Virtual Machine is not as efficient as machine
code, there are compilers to native code available.
There is also a wide range of standard libraries for
networking, graphic, graphical user interfaces and
others.

One very important point is Java’s Internet
awareness. You can imagine that you will be able
to (automatically) download new modules and NTS
plug-ins, share fonts and input texts over the Inter-
net and use JavaBeans 1 to tailor the system for your
needs interactively. We also anticipate good support
for Java in future. This is now very popular and
many new applications are being implemented in it.
It is quite possible that a Java interpreter will even-
tually be burned onto a silicon chip at some point
in the not-too distant future.

Design of NTS

During the Spring of 1998 there were two more meet-
ings of the NTS working group. Mainly discussed
were the features of NTS which will not be imple-
mented in the first version but which the design has
to anticipate. Gradually the specification for the
first version was set.

The first task of real work on the implementa-
tion was to make a design with proposed structure of
the NTS. It was ready by May 2 1998 and reviewed
by Philip Taylor and Jǐŕı Zlatuška. The presenta-
tion of the main design decisions will follow. We do
not want to go into very implementation-specific de-
tails, it will instead be a rather informal description

1 JavaBeans is a component architecture that helps inde-
pendent vendors write classes that can be treated as compo-
nents of larger systems assembled by users.

of things which might be of interest. Comments are
of course welcome.

General notes The specification for re-implemen-
tation is rather simple. The main source of informa-
tion is TEX: The Program itself. The task is not to
design something with a different philosophy, it is
rather to take used principles and make them more
open and general. It seems that there were two main
constraints at the time of the creation of TEX — the
low performance of machines and the programming
technology available.

The first problem related to these constraints is
memory management. On the one hand the memo-
ries of computers at that time were very small com-
pared with today, whilst on the other hand there was
probably no standard support for dynamic mem-
ory management. Knuth decided to create his own
memory management based on preallocated buffers.
Today we are much less constrained in using mem-
ory. The physical memories of today’s computers
are much bigger and current operating systems pro-
vide even larger virtual memories.

The second problem was concerned with the
data structures. It is apparent from the source code
that Knuth tried to use memory in the most effec-
tive way. He did not accept the standard Pascal
records and pointers and rather used preallocated
arrays in a very compact way. This was good for
performance but it would be very painful to add
new data structures to existing scheme. The sym-
bolic names for structure items are maintained using
WEB macros and therefore their types are not distin-
guished and checked by compiler.

Fortunately Java provides us with very ad-
vanced memory management with garbage collec-
tion. It is very natural to accept Java objects as
data structures, not to take special care about mem-
ory at all and not to impose any explicit limits to
the size of internal buffers.

WEB preprocessor We believe that Knuth took the
best programming language available for his pur-
pose at the time. But even standard Pascal was not
enough and he made the WEB preprocessor mainly
for three reasons: literate programming, macro def-
initions and rearranging the source text.

Pascal serves well for the structured program-
ming paradigm. But if you peek into TEX: The
Program you can recognize steps towards an object
oriented paradigm supported by WEB. The code deal-
ing with particular data structures — mainly the rel-
evant parts of switches in general procedures as (for
example) symbolic printing or of course the main_
control— is usually gathered in one place. In an

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 319



Karel Skoupý

object oriented language such processing is imple-
mented by virtual methods of objects and there is
no need for rearranging the order of source code and
for most of the switches any more.

The need for macro definitions is very much re-
duced, too. In C++ the usage of macros was signif-
icantly replaced by templates. Unfortunately stan-
dard Java does not provide any of these facilities
(there are other implementations which have tem-
plates and operator overloading as an extension, e.g.
jump2). This should not impact too badly on NTS:
templates are mostly used in general frameworks.

We certainly want the new program to be well
documented, but we are still not concerned to make
a book of it. Java has its own source documentation
facility. The documentation is in the form of prag-
matic comments and is supposed to be in HTML or
a similar SGML-based format. It seems sufficient to
us now. Well, it may change in future but in such a
case it is not necessary to change the program code
itself.

Character set, fonts and hyphenation. In cur-
rent TEX the input encoding, hyphenation pattern
encoding and font encoding must be the same. Also
there are only 256 character codes. It may be suffi-
cient for English but it makes usage of TEX harder
for other languages. There are ways around it (vir-
tual fonts, pattern sources independent of character
encoding), the thing just can be made much easier.

Fonts and hyphenation tables will be imple-
mented as object providing methods under a well de-
fined interface. It is possible that objects for differ-
ent formats provide the same interface and for exam-
ple PostScript font metrics can be used directly. We
can make the interface to such objects independent
of encoding using character names. Internally the
characters will be represented by numbers but there
will be a module for mapping to external names. In
case the font does not know the names (pk fonts),
the process will default to numeric codes. The codes
can possibly be re-mapped by tables for different en-
codings and independent of fonts.

Diagnostics. TEX uses terminal and log files for di-
agnostic purposes. It can be made much more gen-
eral by polymorphic log objects. Some users might
prefer some windowed output (strange but possible),
but mainly it can be used by some wrapping appli-
cation having NTS as a processor inside.

Basic types. Numbers, dimens and glues will be
in NTS as well. Their semantics will be the same

2 jump is a free Java compiler with mentioned capa-
bilities, see: http://ourworld.compuserve.com/homepages/

DeHoeffner/jump.htm

as in TEX. Maybe in future we will add other types
for some extended typesetting tasks.

Language. In TEX the input characters are trans-
formed to tokens and they are after macro expan-
sion transformed to primitive commands which are
handled by the chief executive. In NTS the process
will be similar but our aim is to separate different
layers as much as possible. The input, tokenization
and macro expansion will be a straightforward re-
implementation using objects.

Although in TEX there are dependencies be-
tween the macro language and typesetting (the di-
mensions of boxes in registers, named typesetting
parameters, output routine) we will try to make
these dependencies clear and handled via well de-
fined interface. This might allow us to provide some-
time in the future an alternative input language
(procedural, object oriented, . . . ) without any in-
compatible change (extensions might be necessary)
to the typesetting engine driven by primitive com-
mands.

Modes. The meaning of a primitive command may
depend on the current mode. There are three main
modes (vertical, horizontal, maths) in TEX each with
two submodes. In NTS it will be much more gen-
eral. The modes will not be just codes but poly-
morphic objects. They will provide methods such as
adding the next character, kern or glue and so on. In
some cases the method will issue an error message
("You can’t ... in ... mode"), in other cases
it will push another object onto the stack of modes.
Each command will know how to apply itself when
meeting with a mode.

This will allow for making new specialized
modes derived from existing ones. We will try (for
example) to implement alignments in this way. Com-
mands not aware of any specialization will pass in
the usual way but specialized commands can test the
current mode and invoke some extra method not in-
cluded in the base mode interface. This approach
may make non-textual modes for chemical formulæ,
pictures or music notes more easy and efficient.

Lists and boxes. The objects in lists will be poly-
morphic so the formatting algorithms will handle
each object uniformly. They will invoke only the
appropriate methods to get information about size,
stretchability, . . .

In TEX the lists are static once created. After
breaking a paragraph into lines there is no easy way
to reformat it. Also the parameters used by the
paragraph breaking algorithm (such as \tolerance
or \hyphenpenalty) are lost after processing. In

320 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting



NTS: a New Typesetting System

NTS the lists will remain dynamic and keep all the
information necessary for reformatting later.

One application might be a WYSIWYG interac-
tive program which needs to reformat a paragraph
after a user’s change to it. We do not plan such a
program to be part of NTS but NTS might be used
by someone else as an internal engine and we will
try to make it possible. Provided that the modules
of NTS are independent, they can be used by such
applications directly. In such case the applications
can also employ lists as their own data structures.

But there is a more important reason from the
point of view of high quality typesetting — global
page break optimization. Actually this was one of
the main challenges to NTS. For solving this prob-
lem we will need to keep the whole main vertical
list and try to find a satisfactory (or optimal) se-
quence of page breaks. Then reformatting of para-
graphs might be helpful. If we allow the page layout
(\hsize) to change for different pages it will become
a necessity. Even without global optimization the
changing page layout is a problem and more general
shapes of paragraphs (than defined by \hsize and
\parshape) will be useful.

Maths formulæ. TEX is excellent in the typeset-
ting of mathematics. The formulæ have their own
representation which is transformed to usual boxes
when contributed to the parent list. The difference
in NTS approach is that the objects for formulæ will
be descendants of the same base class as the ordi-
nary text. It will not need transformation and will
be kept dynamically in the same way as lists.

Output. You might guess that also the output will
be shipped out by a polymorphic object. It will
have methods for setting characters, rules, images
or some graphic objects. The objects in the list will
know which method to invoke. One implementation
can produce DVI, others can generate PostScript or
PDF.

Algorithm parameterization. TEX’s algorithms
are parametrized in many ways. There are a lot of
numeric parameters to the paragraph breaking algo-
rithm, page output and page breaking is influenced
by a user defined output routine. We can make pa-
rameterization more general. Beside an enriched set
of variable parameters we will prepare void virtual
methods which can (for example) add extra demer-
its to two consecutive broken lines in a paragraph
or to a whole sequence of potential line breaks. By
supplying some smart code to such methods, it will
be possible to avoid “rivers” and other subtleties
not solved by TEX. Such parameterization will be
done by making a specialized version of NTS with

overridden methods or by more convenient plug-ins.
The possibility of giving access to internal lists in
the input language and user supplied methods from
the input file should be discussed.

Conclusion

We described the current state of the initial phase
of the NTS project aiming at re-implementing TEX
in Java so that the internal structure of the pro-
gram will allow for experiments and modifications of
the algorithms used or the actions taken when type-
setting using TEX. Basic design decisions behind
the choice of the implementation language and the
object-oriented programming paradigm have been
exposed and the overall structure of the resulting
program has been outlined.

The first version of the NTS is now under de-
velopment and should be available by the beginning
of 1999.

The author wishes to express thanks to Don
Knuth for making TEX available, the NTS group
for fruitful discussions, contributors to the NTS-L
list for many interesting ideas, and DANTE e.V. for
continuing support in this endeavor.

References

[1] Ken Arnold, James Gosling: “The Java Pro-
gramming Language, Second Edition”, Ad-
dison-Wesley Publishing Company, Reading,
Mass., December 1997.

[2] Michael Barr: “TEX wish list”, in TUGboat,
Vol. 13, No. 2, pp. 223–226, July 1992.

[3] Nelson H. F. Beebe: “Comments on the future
of TEX and METAFONT”, in TUGboat, Vol. 11,
No. 4, pp. 490–494, November 1990.

[4] Roger Hunter: “A future for TEX”, in TUG-
boat, Vol. 14, No. 3, pp. 183–186, October 1993.

[5] Donald E. Knuth: “The future of TEX and
METAFONT”, in TUGboat, Vol. 11, No. 4,
pp. 489–489, November 1990.

[6] Donald E. Knuth: “TEX: The Program”, Ad-
dison-Wesley Publishing Company, Reading,
Mass., 1986.

[7] Frank Mittelbach: “E-TEX: Guidelines for
future TEX”, in TUGboat, Vol. 11, No. 3,
pp. 337–345, September 1990.

[8] Philip Taylor: “TEX: The next generation”,
in TUGboat, Vol. 13, No. 2, pp. 138–138,
July 1992.

[9] Philip Taylor: “The future of TEX”, in TUG-
boat, Vol. 13, No. 4, pp. 433–442, Decem-
ber 1992.

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 321



Karel Skoupý

[10] Philip Taylor: “NTS: the future of TEX”, in
TUGboat, Vol. 14, No. 3, pp. 177–182, Octo-
ber 1993.

[11] Philip Taylor: “NTS update”, in TUGboat,
Vol. 14, No. 4, pp. 381–382, December 1993.

[12] Philip Taylor: “Report of the 2nd meeting of
the NTS group, February 1994”, in TUGboat,
Vol. 15, No. 2, pp. 96–97, June 1994.

[13] Philip Taylor: “Minutes of the NTS meeting
held at Lindau on October 11/12th 1994”, in
TUGboat, Vol. 15, No. 4, pp. 434–437, Decem-
ber 1994.

[14] Philip Taylor: “NTS & ε-TEX: a status re-
port”, in TUGboat, Vol. 18, No. 1, pp. 6–12,
March 1997.

[15] Zlatuška, Jǐŕı (ed): EuroTEX ’92 Proceedings,
pp. 235-254, September 1992. Published by
CSTUG, Czechoslovak TEX Users Group, ISBN
80-210-0480-0.

322 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting


