
80 TUGboat, Volume 30 (2009), No. 1

Spheres, great circles and parallels∗

Denis Roegel

Abstract

Each domain has its graphical archetypes. In par-
ticular, spheres are unavoidable components of do-
mains such as geography or astronomy. However,
when perusing a number of publications, we noticed
that spheres were often incorrectly drawn with re-
spect to their features such as great circles and paral-
lels. This article examines several simple METAPOST

techniques that remedy these problems.

1 Introduction

The spheres and their components (great circles,
meridians, parallels) make up the typical illustrations
in certain fields such as geography or astronomy. For
instance, the motion of the Sun in the sky will often
be represented as a sphere with the celestial equator,
the ecliptic and the apparent path of the Sun on this
sphere. In certain fields, spheres illustrate projec-
tions, be it in cartography, gnomonics, or elsewhere.
The representations of spheres in publications are
themselves projections.

Here we examine the simplest case: spheres rep-
resented in parallel projection on a plane. In that
case, the projection is done along parallel lines. We
will also assume, for simplification, that the projec-
tion plane is orthogonal to the projection direction,
although part of our conclusions are independent of
this assumption.

More precisely, the problem we consider is that
of drawing a sphere, with an equator, meridians,
other great circles, parallels, all of them with correct
dashed lines.

In order to get a good understanding of the
possible difficulties of this task, it is useful to review
the general principles of the projections which are
commonly used.

2 Projections

The main projections are illustrated in figure 1. We
have represented the projections of the equator, of
the North pole and of one of the points whose pro-
jection follows a line which is tangent to the sphere.

3 How the problem is handled in
the literature

A perusal of the literature, be it on paper or the
Internet, is a source of surprises. Assuming that

∗ Translation of “Sphères, grands cercles et parallèles,”
Les Cahiers GUTenberg, number 48, April 2007, pages 7–22.
Reprinted with permission.

the projections are done on a plane and either along
parallels or in a perspective manner, two totally
natural assumptions, it appears that the majority
of the books consulted represent the spheres in a
contradictory way.

The problems are all confined to figures which
have not been drawn by projection. For instance,
aside from the fact that many of these figures do not
represent the projected circles as ellipses, the prob-
lems displayed in most of the printed figures concern
the position of certain points, in particular the poles.
For instance, in the case of the projections of figure 1,
when the equator is transformed in an ellipse, the
poles should not be positioned at the periphery of
the projected sphere, but this is unfortunately often
the case on the printed representations.

To support our claim, we give a list of a few
books where the spheres are problematic, with a page
example, which will allow the interested reader to
locate them:
• W. M. Smart: Celestial Mechanics, New York:

Longmans, 1953, p. 24.
• Derek J. Price: The equatorie of the planetis,

Cambridge: the University press, 1955, p. 96.
• John D. North: Richard of Wallingford, Oxford:

Clarendon Press, 1976, vol. 3, p. 152.
• René R. J. Rohr: Sundials: History, Theory,

and Practice, New York: Dover Publications,
1996, p. 25.
• Gianni Pascoli: Éléments de mécanique céleste,

Paris: Masson, 1997, p. 12.
• Raymond d’Hollander: L’astrolabe : histoire,

théorie et pratique, Paris: Institut océanogra-
phique, 1999, p. 26.
• Denis Savoie: La gnomonique, Paris: Les Belles

Lettres, 2001, p. 44.
• Denis Savoie: Cosmographie, Paris: Belin-Pour

la science, 2006, p. 17.
That said, some books take care not to put the

poles on the limit circle, and this is in particular the
case in Otto Neugebauer’s classic A History of An-
cient Mathematical Astronomy, New York: Springer,
1975, p. 1408.

A number of web sites are also faulty, for in-
stance those of the Paris-Meudon observatory or of
the Institut de Mécanique Céleste et de Calcul des
Éphémérides (http://www.imcce.fr) which display
objectionable representations.

The reasons for perpetuating these errors are
not totally clear; it seems that it is a certain habit,
perhaps a kind of laziness, and— in some cases— the
result of the subcontracting of figures by the authors.

Denis Roegel

TUGboat, Volume 30 (2009), No. 1 81

Figure 1: Orthogonal (left), oblique (center) and perspective (right) projections on a vertical plane.

4 A METAPOST approach

Although our application is very simple, it doesn’t
seem to have been handled with the METAPOST

software, or with other graphical TEX tools such
as PSTricks. The extensions of the latter system
already provide a number of facilities for the repre-
sentation of 3-dimensional objects, but the represen-
tation of objects in space obscures the hidden parts
by overlaying them and therefore doesn’t involve
the computation of boundaries between visible and
invisible parts.

One of the difficulties of the representation of
spheres is related to dashed lines. Dashed lines are
traditionally used for representing the hidden parts.
It is therefore necessary to ensure that these lines
start and end at the right places, and this task usually
requires the computation of intersections.

It is when designing a figure for a lecture in
astronomy that we have, in the first place, made the
same error as that of our predecessors; the reflex of
“poles on the circle” was rooted in our habits. Fig-
ure 2 represents these first attempts, typical of the
figures which are found almost everywhere. Figure 3
illustrates how the spheres should have been repre-
sented. The positions of the poles are here computed
in an exact way, for the poles of the equator (N
and S) as well as for those of the ecliptic (N∗ and
S∗). Moreover, the angle between the planes of the
equator and the ecliptic is also correctly displayed
(23.5◦). In the case of the lunar orbit, however, we
have intentionally increased the angle between that
orbit and the plane of the ecliptic.

We will now describe how the correct figures
were obtained, and we will restrict ourselves to the
case of orthogonal projections. Our constructions
will be in METAPOST, but nothing prevents the
transposition of our techniques to other languages.1

1 For an introduction to METAPOST, one can readily con-
sult various tutorials on the web, the documentation available

4.1 The projection of the sphere

The orthogonal projection of the sphere is a circle
whose diameter is that of the sphere. We will assume
for simplification that the circle is centered at the
origin.

r=5cm;draw fullcircle scaled 2r;

4.2 Definition of vectors

In order to precisely control the projection, we first
define a vector type. METAPOST does not provide
such a type, but it has a color type with three
numerical components which we disguise as a vector.
Accessing the components of the vectors is done with
Xp, Yp and Zp. We then define a few elementary
operations on these vectors, like the dot product
(dotproduct), the vector product (vecproduct) and
the construction of a unit vector.

let vector=color;
let Xp=redpart; let Yp=greenpart; let Zp=bluepart;

def dotproduct(expr Vi,Vj)=
(Xp(Vi)*Xp(Vj)+Yp(Vi)*Yp(Vj)+Zp(Vi)*Zp(Vj))

enddef;

def vecproduct(expr Vi,Vj)=
(Yp(Vi)*Zp(Vj)-Zp(Vi)*Yp(Vj),
Zp(Vi)*Xp(Vj)-Xp(Vi)*Zp(Vj),
Xp(Vi)*Yp(Vj)-Yp(Vi)*Xp(Vj))

in most TEX distributions, or the second edition of the LATEX
Graphics Companion.

Spheres, great circles and parallels

82 TUGboat, Volume 30 (2009), No. 1

North

South

γ

O

S

S′

equator

ecliptic

Pe

North

South

γ

O
ΩΩ

L1

L2

L3

equator

ecliptic

lunar orbit

Figure 2: Two sphere drawings violating the properties of parallel projections on a
plane. The poles are here put at the periphery of the spheres, although they should
be located slightly inside of the spheres, given the angle under which the plane of the
equator is seen.

O

γ

N

S

S

S′

Pe

equator

ecliptic

O

γ

N

S

N∗

S∗

Ω

Ω

L1

L2

L3

equator

ecliptic

lunar orbit

Figure 3: Two correct drawings of the planes of the equator and of the ecliptic, of
the poles and of the meridians. The inclination of the lunar orbit has intentionally
been magnified.

Denis Roegel

TUGboat, Volume 30 (2009), No. 1 83

enddef;

def norm(expr V)= sqrt(dotproduct(V,V)) enddef;
def normed(expr V)= (V/norm(V)) enddef;

4.3 Orientation in space

Before performing the projection, the sphere is ori-
ented in space. More precisely, we construct three
vectors −→V1,

−→
V2,
−→
V3 using the vectors of the orthonor-

mal basis. We employ only two angles, and in that
manner we maintain the vertical character of the
projection of one of the vectors. θ is the angle by
which ~ı is rotated around ~k, which produces −→V1. φ
is the angle by which ~k is rotated around −→V1, which
produces −→V2.

−→
V3 is the vector product of −→V1 and −→V2

and is oriented towards the observer. Finally, −→V1

represents the vector of the projection plane directed
towards the right and −→V2 the one directed towards
the top. The figures in the sequel were obtained with
θ = 70 and φ = −15.

vector V[]; % vector array
theta=70;phi=-15;
V1=(cosd theta,sind theta,0);
V2=(sind(phi)*sind(theta),

-sind(phi)*cosd(theta),cosd(phi));
V3=vecproduct(V1,V2);

4.4 The projection

The projection itself is very simple to achieve, as it
is sufficient to determine the components of a vector
in space in the (−→V1,

−→
V2,
−→
V3) base, something which is

immediate with the dot product. Only the first two
components are of interest to us, since −→V3 is parallel
to the projection direction. A project function
allows us to write this projection naturally, and this
function therefore doesn’t use the third vector:

def project(expr V,Va,Vb)=
(dotproduct(V,Va),dotproduct(V,Vb))

enddef;
z0=(0,0);
z1=project((r,0,0),V1,V2);
z2=project((0,r,0),V1,V2);
z3=project((0,0,r),V1,V2);
drawarrow z0--z1;drawarrow z0--z2;
drawarrow z0--z3;

4.5 Construction of the equator

We can now draw a great circle, for instance the circle
of the equator. Its equation is very simple: it is the
set of points (r cos t, r sin t, 0) for 0 ≤ t < 360, t being
expressed in degrees. The f_equ macro corresponds
to this expression and the projected curve is obtained
by connecting the projections of points at regular
intervals, here from 10 to 350 degrees.

def f_equ(expr r,t)=(r*cosd(t),r*sind(t),0) enddef;

path equator; equator=
project(f_equ(r,0),V1,V2)
for t=10 step 10 until 350:
.. project(f_equ(r,t),V1,V2)

endfor .. cycle;
draw equator withcolor blue;

4.6 Simplification of the equator

The equator is now represented by a curve con-
structed from a large number of points. However, this
curve should be an ellipse and we can obtain a very
good approximation of it by constructing it using
fullcircle instead. (It is only an approximation
since fullcircle is not exactly a circle.)

The construction of an ellipse from a circle is
done as follows, using the semi-major axis, the semi-
minor axis and the angle of the ellipse. The correct
drawing of the ellipse requires the knowledge of its
two axes, which are not yet known in the above
construction.

def ellipse(expr ra,rb,an)=
(fullcircle xscaled 2ra yscaled 2rb rotated an)

enddef;
draw ellipse(r,.5r,0);

Spheres, great circles and parallels

84 TUGboat, Volume 30 (2009), No. 1

4.7 Determination of the elements of
the ellipse

In order to obtain the elements of the ellipse (axes
and orientation), the projection parameters can be
used, or we can merely measure these elements on
the ellipse as constructed pointwise. This can be
done as follows:
• first, a circle is superimposed to the ellipse;
• the four intersections of this circle with the el-

lipse are determined (this may require the circle
to be resized);
• the intersections easily provide the directions of

the axes;
• these axes are then measured;
• finally, the ellipse is constructed in a more eco-

nomical way.

We will now examine in more detail how this
procedure is realized.

4.7.1 Orientation of the ellipse

In order to determine the orientation of the ellipse,
we make use of the ellipse_major_angle macro
below, which takes a path p representing an ellipse
of semi-major axis a centered at the origin. A simple
dichotomy looks for a half circle of radius rc with
a non-void intersection with the ellipse. Then, two
intersections (pi1, pi2) are obtained with the help of

intersectionpoint, by carefully splitting the half-
circle. By symmetry, these two intersections give two
other intersections (pi3, pi4).

The orientation of the ellipse is obtained by
locating two intersections, pi5 and pi6. One of
these intersections is with the major axis, the other
with the minor axis.

vardef ellipse_major_angle(expr p,a)=
save pa,pc,pi,ra,rb,rc,an;
path pc[];pair pa,pi[];ra=.5a;rb=a;
forever: %======== dichotomy ==========

rc:=.5[ra,rb];
pc0:=subpath(0,4) of fullcircle scaled 2rc;
pa:=pc0 intersectiontimes p;
exitif pa<>(-1,-1);ra:=rc;

endfor;
%=== computation of two intersections ===
pi1=p intersectiontimes pc0;
pc1=subpath(0,ypart(pi1)-0.01) of pc0;
pc2=subpath(ypart(pi1)+0.01,length(pc0)) of pc0;
pi1:=p intersectionpoint pc0;
pi2:=p intersectiontimes pc1;
if pi2=(-1,-1):

pi2:=p intersectionpoint pc2;
else:

pi2:=p intersectionpoint pc1;
fi;
pi3=pi1 rotated 180;
pi4=pi2 rotated 180; % other intersections
%======= orientation ======
pi5=p intersectionpoint

(origin--(unitvector(pi2-pi1)*2a));
pi6=p intersectionpoint

(origin--(unitvector(pi1-pi4)*2a));
if arclength(origin--pi5)>arclength(origin--pi6):

an=angle(pi1-pi2);
else:

an=angle(pi1-pi4);
fi;
an % result of the macro

enddef;

4.7.2 The minor axis of the ellipse

The ellipse_minor_axis macro takes a path p rep-
resenting an ellipse of semi-major axis a centered at
the origin, and whose major axis is oriented accord-
ing to the angle an. The macro merely determines
the intersection of p and a line located at a right
angle to the major axis and measures its distance
from the center of the ellipse.

vardef ellipse_minor_axis(expr p,a,an)=
save pa;pair pa;
pa=p intersectionpoint (origin--(dir(an+90)*2a));
arclength(origin--pa) % result

enddef;

These two macros make it therefore possible
to determine all the parameters necessary to the
economical drawing (that is, not pointwise) of an
ellipse.

Denis Roegel

TUGboat, Volume 30 (2009), No. 1 85

4.8 The dashes on the equator

The dashes on the equator correspond to one half of
the ellipse and the two halves are joined by the major
axis. It is therefore sufficient to cut the ellipse in two
parts and draw one in plain lines, the other in dashed
lines. The ellipse returned by the ellipse macro is
a parametric curve where the parameter goes from 0
to 8 (the base circle contains eight points), 0 being
on the major axis, and the paths from 0 to 4 and
from 4 to 8 are excerpted from it.

path pa,pb,pc;
pa=ellipse(r,rb,0);
pb=subpath(0,4) of pa;
pc=subpath(4,8) of pa;
draw pb dashed evenly; % hidden
draw pc; % visible

4.9 Great circles

The same principle is used for all the great circles.
The only difficulty is the determination of an equa-
tion for these great circles. The macros used are
parameterized in order to be able to choose which of
the two parts is dashed.

O

γ

N

S

N∗

S∗

Ω

Ω

L1

L2

L3

equator

ecliptic

lunar orbit

Some of the circles are determined by certain
constraints. For instance, in the above drawing, we
were given point L1 on the ecliptic, then the ecliptic
meridian going through L1 was constructed, leading
to the determination of point L2 on the lunar orbit.
These intersections were obtained by the intersection
of projections, but the intersection in space was then

found again using the knowledge of the curves. Fi-
nally, the equatorial meridian going through L2 was
drawn, making it possible to obtain L3.

4.9.1 Constraints

We can easily take such constraints into account
by using the rotatearound macro which rotates a
vector around another one.

% rotates Va around Vb by the angle ‘a’
vardef rotatearound(expr Va,Vb,a)=

save v;vector v[];
v0=normed(Vb);v1=dotproduct(Va,v0)*v0;
v2=Va-v1;v3=vecproduct(v0,v2);
v4=v2*cosd(a)+v3*sind(a)+v1;
v4 % result

enddef;

Therefore, for the case of the curve representing
the ecliptic, whose equation is determined by the
function

def f_ecliptic(expr t)=
(a*(cosd(t),sind(t)*cosd(ec_angle),

sind(t)*sind(ec_angle)))
enddef;

where ec_angle is the obliquity of the ecliptic plane
(23.5◦), we begin by determining the North pole (N∗)
of the ecliptic, assuming γ = (1, 0, 0):

vector North,North_Ec;North=a*(0,0,1);
North_Ec=rotatearound(North,(1,0,0),ec_angle);

Since point L1 is chosen on the ecliptic, the
meridian going through L1 and N∗ is determined
by the two vectors

−−−→
ON∗ and −−→OL1, each point of

the meridian being obtained by the rotation of −−→OL1

around a vector orthogonal to −−→OL1 and
−−−→
ON∗. The

following macro, parameterized by the point A (in
space) on the ecliptic and an angle t, makes it possible
to describe this meridian:

def f_ec_meridian(expr t,A)=
(A*cosd(t)+North_Ec*sind(t))

enddef;

This function is then used to define the projected
path ec_meridian, using project, as we did above
when defining the equator path.

4.9.2 Inverse projection

The principle of the “inverse projection” is very sim-
ple and we will only sketch it. For instance, in
order to determine L2 from L1 in the previous fig-
ure, we have on the one hand constructed the great
circle going through L1 and N∗ as explained above
(ec_meridian), and on the other hand the lunar orbit
(moon) applying analogous principles. The intersec-
tion of these two projected curves was computed in
the usual way:

Lp2=moon intersectionpoint ec_meridian;

Spheres, great circles and parallels

86 TUGboat, Volume 30 (2009), No. 1

Here, the intersectionpoint macro was as-
sumed to return the correct intersection, which is
not always the case.

Now, point L2 in space is a linear combination
determined by two vectors forming a basis of the
plane of the lunar orbit. These two vectors can be
determined by the equation of the lunar orbit and we
call them moon_x and moon_y. We have therefore:

L2=m_x*moon_x+m_y*moon_y;

where m_x and m_y are scalar values. These un-
knowns can be determined by projecting the above
equation, because a parallel projection is a linear
transformation:

Lp2=m_x*project(moon_x,V1,V2)
+m_y*project(moon_y,V1,V2);

The latter equation defines m_x and m_y from
Lp2 (point of the plane) and therefore defines at the
same time L2 (point in space).

Once L2 is known, we are able to use it to obtain
L3 in an analogous way.

4.10 Parallels

The case of the great circles was relatively simple,
because these circles were always half visible and half
invisible, the limit of visibility being on the major
axis of the ellipse. This is not the case for the other
circles of the spheres. We examine here only the case
of the parallels to the equator.

Parallels have a number of distinctive features:
they do not necessarily have as much visible as they
have hidden; they can be totally visible or totally
hidden; they have a visible/hidden limit which is not
on the major axis.

In order to draw the parallels correctly, it is
necessary to determine the limits between the visible
part and the hidden part of a parallel.

The limits of visibility are determined by the
intersection between the plane orthogonal to the

viewing direction (−→V3), and the circle representing the
parallel. This intersection can consist in zero points
(the parallel is then totally visible, or totally hidden),
two points (there is both a hidden and a visible part),
or one point (this is the limit case between the two
previous cases).

O

γ

N

S

Ω

Ω′

equator

ecliptic

Once the intersections are obtained in space,
they are converted into angles and the two arcs are
drawn separately using these angles. The macro
draw_parallel is defined in figure 4.

The equation of a parallel at latitude φ will be
the following:

def f_parallel(expr r,theta,phi)=
(r*cosd(phi)*cosd(theta),
r*cosd(phi)*sind(theta),r*sind(phi))

enddef;

5 Conclusion

Having observed that many spheres were not cor-
rectly represented in the literature, we have analyzed
the problem in detail and have written a few META-
POST commands to produce correct drawings. We
now only hope that this work will contribute, even
indirectly, to an improvement of the realism of the
spheres in the way they are employed in cosmography
and elsewhere.

Moreover, it seems interesting to extend other
graphical packages with such functionalities, always
for the purpose of fostering their use. The PSTricks
package might benefit from such an extension, which
would moreover allow for a comparison with our own
implementation.

� Denis Roegel
LORIA—BP 239
54506 Vandœuvre-lès-Nancy cedex
France
roegel (at) loria dot fr
http://www.loria.fr/~roegel

Denis Roegel

TUGboat, Volume 30 (2009), No. 1 87

% phi=latitude, col=color, side=1 or -1 depending on the dashes
vardef draw_parallel(expr phi,col,side)=

save p;path p[];p0=project(f_parallel(a,0,phi),V1,V2)
for t=0 step 10 until 360 :..project(f_parallel(a,t,phi),V1,V2) endfor;
% we now search for the intersections of this parallel
% with the projection plane:
% plane: V3x*x+V3y*y+V3z*z=0
% parallel: x=r*cos(phi)*cos(theta), y=r*cos(phi)*sin(theta), z=r*sin(phi)
% we search theta:
save A,B,C,X,Y,ca,cb,cc,delta,nx,tha,thb;
numeric X[],Y[];ca=Xp(V3);cb=Yp(V3);cc=Zp(V3);
if cb=0:X1=-(cc/ca)*sind(phi)/cos(phi);nx=1;
else:

A=1+(ca/cb)**2;B=2*ca*cc*sind(phi)/(cb*cb);
C=((cc/cb)*sind(phi))**2-cosd(phi)*cosd(phi);delta=B*B-4A*C;
if delta<0:nx=0;% no intersection
else:

X1=((-B-sqrt(delta))/(2A))/cosd(phi); % = cos(theta)
X2=((-B+sqrt(delta))/(2A))/cosd(phi); % = cos(theta)
Y1=-((ca*X1+cc*sind(phi)/cosd(phi))/cb); % = sin(theta)
Y2=-((ca*X2+cc*sind(phi)/cosd(phi))/cb); % = sin(theta)
tha=angle(X1,Y1);thb=angle(X2,Y2);nx=2;

fi;
fi;
if nx=0: % totally (in)visible parallel

if side=1:draw p0 withcolor col;
else:draw p0 withcolor col dashed evenly;fi;
message "NO INTERSECTION";

elseif nx=1:X10=angle(X1,1+-+X1);X11=360-X10;
else: % general case

if tha<thb:X10=tha;X11=thb;else:X10=thb;X11=tha;fi;
fi;
if nx>0: % determination of the two paths

p1=project(f_parallel(a,X10,phi),V1,V2)
for t=X10+1 step 10 until X11:..project(f_parallel(a,t,phi),V1,V2)
endfor;
p2=project(f_parallel(a,X11,phi),V1,V2)
for t=X11+1 step 10 until X10+360:..project(f_parallel(a,t,phi),V1,V2)
endfor;
% drawing the two paths
if side=1:draw p1 withcolor col;
else:draw p1 withcolor col dashed evenly;fi;
if side=1:draw p2 withcolor col dashed evenly;
else:draw p2 withcolor col;fi;

fi;
enddef;

Figure 4: Code for drawing a circle parallel to the equator.

Spheres, great circles and parallels

