
Luna—my side of the moon

Paweł Jackowski

Perhaps everyone knows the pleasant feeling when
a long lasting project is finally done. A few years
ago, when I was almost happy with my pdfTEX
environment, I saw LuaTEX for the first time. So
instead of enjoying some relief, I had to take a
deep breath and start moving the world to the
Moon. The state of weightlessness thus caused is
such that I’m not able to walk on the “normal”
ground any more. But I don’t even think about
going back. Although I still haven’t settled for good
yet, the adventure is delightful. To domesticate a
new environment I gave it a name — Luna.

First thoughts

My first thought after meeting LuaTEX was “wow!”.
Scripting with a neat programming language, access
to TEX lists, an ability to hook some deep mecha-
nisms via callbacks, a font loader library on hand,
an integrated METAPOST library and more. All
this was tempting and I had no doubts I wanted to
go for it. At the first approach I was thinking of mi-
grating my workflows step-by-step, replacing some
core mechanisms with those provided by LuaTEX.
But these were not only the macros that needed to
change. It was considering TEX as a programming
language that needed to change. In LuaTEX I
rather treat TEX as a paragraph and page building
machine to which I can talk in a real programming
language.

There were a lot of things I had to face before
I was able to typeset anything, beginning with a
UTF-8 regime and a new TEX font representation,
a lot of work that I never wanted to do myself. So
just after “wow!” also “oops. . . ” had to come. In
this article I focus on things rather tightly related
to PDF graphics, as I find that part the most
interesting, at least in the sense of taking advantage
of Lua and LuaTEX functionalities.

\pdfliteral retires

TEX concentrates on text, providing only a raw
mechanism for document graphics features, such as
colors, transparencies or geometry transformations.
pdfTEX goes a little bit further in providing some
concept of a graphic state accessible for the user.
But the gear for the graphic control remains the
same. We have only specials in several variants.

This article appeared originally in slightly different
form in MAPS 41, fall 2010.

TUGboat, Volume 32 (2011), No. 1 77

What’s wrong with them? The things which
they do behind the scenes may hurt.

\def\flip#1{%

\pdfliteral{q -1 0 0 -1 20 6 cm}%

\hbox to0pt{#1\hss}%

\pdfliteral{Q}\hbox to20bp{\hss}}

\def\red#1{%

\pdfliteral page{q 0 1 1 0 k}%

#1\pdfliteral page{Q}}

The first macro applies a transformation to a

text

object, the second applies a color (red online,
gray in print). If used separately, they work just
fine. If used as \flip{\red{text}}, it’s still
ok:

text

. Now try to say \red{\flip{text}}.
The text is transformed and colored as expected.
But all the rest of the page is broken, as its
content is completely displaced! And now try
\red{\flip{text}?} (with a question mark at the
end of a parameter text). Everything is perfectly
ok again:

text

?
Here is what happens: when \pdfliteral

occurs, pdfTEX inserts a whatsit. This whatsit will
cause writing the data into the output PDF content
stream at the shipout time. If the literal was used in
a default mode (with no direct or page keywords)
pdfTEX first writes a transformation from lower-
left corner of the page to the current position,
then prints the user data, then writes another
transformation from the current position back to the
PDF page origin. Actually the transform restoration
is not performed immediately after writing the user
data, but at the beginning of the very next textual
node. So in the case of several subsequent literal
whatsit nodes, the transform may not occur where
the naive user expects it. Simplifying the actual
PDF output, we expected something like

q 0 1 1 0 k % save, set color

1 0 0 1 80 750 cm % shift to TeX pos

q -1 0 0 -1 20 6 cm % save, transform

BT ... ET % put text

Q % restore transform

1 0 0 1 -80 -750 cm % shift (redundant)

Q % restore color

but we got

q 0 1 1 0 k

1 0 0 1 80 750 cm

q -1 0 0 -1 20 6 cm

BT ... ET

Q

Q

1 0 0 1 -80 -750 cm

Luna — my side of the moon

In general, the behavior of \pdfliterals de-
pends on the surrounding node list. There are
reasons behind it. Nevertheless, one can hardly
control lists in pdfTEX, so it’s hard to avoid sur-
prises.

Does LuaTEX provide something better then
\pdfliterals? Yes; it provides \latelua. Very
much like \pdfliteral, a \latelua instruction in-
serts a whatsit. At shipout time, LuaTEX executes
the Lua code provided as an argument to \latelua.
The code may call the standard pdf.print() func-
tion, which writes raw data into a PDF content
stream. So, what’s the difference? The difference
is that in \latelua chunks we know the current
position on the page: it is accessible through the
pdf.h and pdf.v fields. We can use the position
coordinates explicitly in the literal content. To
simulate the behavior of \pdfliteral one can say

\latelua{

local bp = 65781

local cm = function(x, y)

return string.format(

"1 0 0 1 \%.4f \%.4f cm\string\n",

x/bp, y/bp

)

end

pdf.print("page", cm(pdf.h, pdf.v))

% special contents

pdf.print("page", cm(-pdf.h, -pdf.v))

}

now having the \latelua mechanism and the
pdf.print() function, I no longer need and no
longer use \pdfliteral.

Graphic state

Obviously writing raw PDF data is supposed to be
covered by lower level functions. Here is an example
of how I set up graphic features in a higher level
interface:

\pdfstate{

local cmyk = color.cmyk

cmyk.orange =

(0.8*cmyk.red+cmyk.yellow)/2

fillcolor = cs.orange

opacity = 30

linewidth = ’1.5pt’

rotate(30)

...

}

The definition of \pdfstate is something like

\long\def\pdfstate#1{%

\latelua{setfenv(1, pdf) #1}}

78 TUGboat, Volume 32 (2011), No. 1

The parameter text is Lua code. The setfenv()

call simply allows me to omit the ‘pdf.’ prefix
before variables. Without that I would need

\latelua{

pdf.fillcolor = pdf.color.cmyk.orange

pdf.opacity = 30

pdf.linewidth = ’1.5pt’

pdf.rotate(30)

...

}

pdf is a standard LuaTEX library. I extend its
functionality, so every access to special fields causes
an associated function call. Each such function
updates the internal representation of a graphic
state and keeps the output PDF graphic state
synchronized by writing appropriate content stream
data. But whatever happens underneath, on top
I have just key=value pairs. I’m glad I no longer
need to think about obscure TEX interfaces for that.
The Lua language is the interface.

I expect graphic features to behave more or
less like basic text properties, a font selection
and size. They should obey grouping and they
should be passed through page breaks. The first
requirement can be simply satisfied by \aftergroup

in conjunction with \currentgrouplevel. A simple
group-respecting graphic state could be made as the
following:

\newcount\gstatelevel

\def\pdfsave{\latelua{

pdf.print("page", "q\string\n")}}

\def\pdfrestore{\latelua{

pdf.print("page", "Q\string\n")}}

\def\pdflocal#1{

\ifnum\currentgrouplevel=\gstatelevel

\else

\gstatelevel=\currentgrouplevel

\pdfsave \aftergroup\pdfrestore

\fi \latelua{pdf.print"#1\string\n"}}

\begingroup \pdflocal{0.5 g}

this is gray

\endgroup

this is black

Passing a graphic state through page breaks is
relatively difficult due to the fact that we usually
don’t know where TEX thinks the best place to break
is. In my earth-life I abused marks for that purpose
or, when a more robust mechanism was needed, I
used \writes at the price of another TEX run and
auxiliary file analysis. And so we come to another
advantage of using \latelua. Recalling the fact
that Lua chunks are executed during shipout, we

Paweł Jackowski

don’t need to worry about the page break because
it has already happened. If every graphic state
setup is a Lua statement performed in order during
shipout and every such statement keeps the output
PDF state in sync through pdf.print() calls, then
after the shipout the graphic state is what should
be passed to the very next page.

In a well-structured PDF document every page
should refer only to those resources which were
actually used on that page. The pdfTEX engine
guarantees that for fonts and images, while the
\latelua mechanism makes it straightforward for
other resource types.

Note a little drawback of this late graphic state
concept: before shipout one can only access the
state of the beginning of the page, because recent
\latelua calls that will update the current state
have not happened yet. I thought this might be
a problem and made a mechanism that updates a
pending-graphic state for early usage, but so far I
have never needed to use it in practice.

PDF data structures

When digging deeper, we have to face creating
custom PDF objects for various purposes. Due to
the lack of composite data structures, in pdfTEX
one was condemned to using strings. Here is an
example of PDF object creation in pdfTEX.

\immediate\pdfobj{<<

/FunctionType 2

/Range [0 1 0 1 0 1 0 1]

/Domain [0 1] /N 1

/C0 [0 0 0 0] /C1 [0 .4 1 0]

>>}

\pdfobj{

[/Separation /Spot /DeviceCMYK

\the\pdflastobj\space 0 R]

}\pdfrefobj\pdflastobj

In LuaTEX one can use Lua structures to
represent PDF structures. Although it involves
some heuristics, I find it convenient to build PDF

objects from clean Lua types, as in this example:

\pdfstate{create

{"Separation","Spot","DeviceCMYK",

dict.ref{

FunctionType = 2,

Range = {0,1,0,1,0,1,0,1},

Domain = {0,1}, N = 1,

C0 = {0,0,0,0}, C1 = {0,.4,1,0}

}

}

}

TUGboat, Volume 32 (2011), No. 1 79

Usually, I don’t need to create an independent
representation of a PDF object in Lua. I rather
operate on more abstract constructs, which may
have a PDF-independent implementation and may
work completely outside of LuaTEX. For a color
representation and transformations I use my color
library, which has no idea about PDF. An additional
LuaTEX-dependent binding extends that library
with extra skills necessary for the PDF graphic
subsystem.

Here is an example of a somewhat complex
colorspace: a palette of duotone colors, each con-
sisting of two spot components with lab equivalent
(the PDF structure representing that is much too
long to be shown here):

\pdfstate{

local lab = colorspace.lab{

reference = "D65"

}

local duotone = colorspace.poly{

{name = "Black", lab.black},

{name = "Gold", lab.yellow},

}

local palette = colorspace.trans{

duotone(0,100), duotone(100,0),

n = 256

}

fillcolor = palette(101)

}

In the last line, the color object (simple Lua table)
is set in a graphic state (Lua dictionary), and its
colorspace (another Lua dictionary) is registered
in a page resources dictionary (yet another Lua
dictionary). The graphic state object takes care
to update a PDF content stream and finally the
resources dictionary “knows” how to become a PDF

dictionary.

It’s never too late

When talking about PDF object construction I’ve
concealed one sticky difficulty. If I want to han-
dle graphic setup using \latelua, I need to be
able to create PDF objects during shipout. Gen-
erally, \latelua provides no legal mechanism for
that. There is the pdf.obj() standard function,
a LuaTEX equivalent of the \pdfobj primitive,
but it only obtains an allocated PDF object num-
ber. What actually ensures writing the object
into the output is a whatsit node inserted by a
\pdfrefobj〈number〉 instruction. But in \latelua

it is too late to use it. We also cannot use the
pdf.immediateobj() variant within \latelua, as

Luna — my side of the moon

it writes the object into the page content stream
resulting in an invalid PDF document.

So what can one do? LuaTEX allows creating
an object reference whatsit by hand. If we know
the tail of the list currently written out (or any list
node not yet swallowed by a shipout procedure), we
can create this whatsit and put it into the list on
our own (risk), without use of \pdfrefobj.

\def\shipout{%

\setbox256=\box\voidb@x

\afterassignment\doshipout\setbox256=}

\def\doshipout{%

\ifvoid256 \expandafter\aftergroup \fi

\lunashipout}

\def\lunashipout{\directlua{

luna = luna or {}

luna.tail =

node.tail(tex.box[256].list)

tex.shipout(256)

}}

\latelua{

local data = "<< /The /Object >>"

local ref = node.new(

node.id "whatsit",

node.subtype "pdf_refobj"

)

ref.objnum = pdf.obj(data)

local tail = luna.tail

tail.next = ref ref.prev = tail

luna.tail = ref % for other lateluas

}

In this example, before every \shipout the very
last item of the page list is saved in luna.tail.
During shipout all code snippets from late_lua

whatsits may create a pdf_refobj node and insert
it just after the page tail to ensure writing them
out by LuaTEX engine.

Self-conscious \latelua

If every \latelua chunk may access a page list tail,
why not give it access to a late_lua whatsit node
to which this code is linked? Here is a concept of
the whatsit that contains Lua code that can access
the whatsit:

\def\lateluna#1{\directlua{

local self = node.new(

node.id "whatsit",

node.subtype "late_lua"

)

self.data = "\luaescapestring{#1}"

luna.this = self

80 TUGboat, Volume 32 (2011), No. 1

node.write(self)

}}

\lateluna{print(luna.this.data)}

Beyond the page builder

Self-printing Lua code is obviously not what I use
this mechanism for. It is worthy to note that if
we can make a self-aware late_lua whatsit, we
can access the list following this whatsit. It is too
late to change previous nodes, as they were already
eaten by a shipout and written to the output, but
one can freely (which doesn’t mean safely!) modify
nodes that follow the whatsit.

Let’s start with a more general self-conscious
late_lua whatsit:

\long\def\lateluna#1{\directlua{

node.write(

luna.node("\luaescapestring{#1}")

)

}}

\directlua{

luna.node = function(data)

local self = node.new(

node.id "whatsit",

node.subtype "late_lua"

)

local n = \string#luna+1

luna[n] = self

self.data =

"luna.this = luna["..n.."] "..data

return self

end

}

Here is a function that takes a text string, font
identifier and absolute position as arguments and
returns a horizontal list of glyph nodes:

local string = unicode.utf8

function luna.text(s, font_id, x, y)

local head = node.new(node.id "glyph")

head.char = string.byte(s, 1)

head.font = font_id

head.xoffset = -pdf.h+tex.sp(x)

head.yoffset = -pdf.v+tex.sp(y)

local this, that = head

for i=2, string.len(s) do

that = node.copy(this)

that.char = string.byte(s, i)

this.next = that that.prev = this

this = that

end

head = node.hpack(head)

Paweł Jackowski

head.width = 0

head.height = 0

head.depth = 0

return head

end

Now we can typeset texts even during shipout.
The code below results in typing it is never too

late! text with 10bp offset from the page origin.

\lateluna{

local this = luna.this

local text = luna.text(

"it is never too late!",

font.current(), ’10bp’, ’10bp’

)

local next = this.next

this.next = text text.prev = this

if next then

text = node.tail(text)

text.next = next next.prev = text

end

}

Note that when mixing shipout-time typeset-
ting (manually generated lists) and graphic state
setups (using pdf.print() calls), one has to ensure
placing things in order. Once a list of glyphs is
inserted after a late_lua whatsit, the embedded
Lua code should not print literals into the output.
All literals will effectively be placed before the text
anyway. Here is a funny mechanism to cope with
that:

\lateluna{

luna.thread = coroutine.create(

function()

local this, next, text, tail

for i=0, 360, 10 do

% graphic setup

pdf.fillcolor =

pdf.color.hsb(i,100,100)

pdf.rotate(10)

% glyphs list

this = luna.this next = this.next

text = luna.text("!",

font.current(), 0, 0)

this.next = text text.prev = this

text = node.tail(text)

% luna tail

tail = luna.node

"coroutine.resume(luna.thread)"

text.next = tail tail.prev = text

if next then

tail.next = next next.prev = tail

end

coroutine.yield()

TUGboat, Volume 32 (2011), No. 1 81

end

end)

coroutine.resume(luna.thread)

}\end

This is the output (regrettably grayscaled in print):

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Once the page shipout starts, the list is almost
empty. It contains just a late_lua whatsit node.
The code of this whatsit creates a Lua coroutine that
repeatedly sets some color, some transformation and
generates some text (an exclamation mark) using
the method previously shown. A tail of the text
is another late_lua node. After inserting the
newly created list fragment, the thread function
yields, effectively finishing the execution of the
first late_lua chunk. Then the shipout procedure
swallows the recently generated portion of text,
writes it out and takes care of font embedding.
After the glyph list the shipout spots the late_lua

whatsit with the code that resumes the thread and
performs another loop iteration, making a graphic
setup and generating text again. So the execution
of the coroutine starts in one whatsit, but ends
in another, which didn’t exist when the procedure
started. Every list item is created just before being
processed by the shipout.

Reinventing the wheel

Have you ever tried to draw a circle or ellipse using
\pdfliterals? It is very inconvenient, because
PDF format provides no programming facilities and
painting operations are rather limited in comparison
with its PostScript ancestors. Here is an example
of PostScript code and its output. The code uses
control structures, which are not available in PDF.
It also takes an advantage of the arc operator
that approximates arcs with Bézier curves. To
obtain elliptical arcs, it uses the fact that (unlike in
PDF) transformations can be applied between path
construction operators.

Luna — my side of the moon

/r 15 def

/dx 50 def /dy -50 def

/pos {day 7 mod dx mul week dy mul} def

/arx /arc load def

dx dy 4 mul neg translate

0.6 setgray 0.4 setlinewidth

1 setlinejoin 1 setlinecap

0 1 27 {

/day exch def /week day 7 idiv def

/s day 360 mul 28 div cos def

day 14 eq {

/arx /arcn load def

} {

gsave pos r 90 270 arx

day 7 eq day 21 eq or {

closepath

gsave 0 setgray stroke grestore

} {

s 1 scale

pos exch s div exch r 270 90 arx

gsave 0 setgray initmatrix stroke

grestore

} ifelse

fill grestore

} ifelse

} for

In LuaTEX one can hire METAPOST for draw-
ings, obtaining a lot of coding convenience. The
above program wouldn’t be much simpler, though.
As of now, METAPOST does not generate a PDF;
whatever it outputs still needs some postprocessing
to include the graphic on-the-fly in the main PDF

document.
As I didn’t want to invent a completely new

interface for graphics, I decided to involve Post-
Script code in document creation. Just to explain

82 TUGboat, Volume 32 (2011), No. 1

how it may pay off, after translating the example
above into a PDF content stream I obtain 30k bytes
of code, which is quite a lot in comparison with the
500 bytes of PostScript input.

PostScript support sounds scary. Obviously
I’m not aiming to develop a fully featured Post-
Script machine on the LuaTEX platform. A Post-
Script interpreter is supposed to render the page
on the output. In Luna I just write a vector data
string into a PDF document contents, so what I
actually need is a reasonable subset of PostScript
operators. The aim is to control my document
graphics with a mature language dedicated for that
purpose. The following two setups are equivalent,
as at the core level they both operate on the same
Lua representation of a graphic state.

\pdfstate{% lua interface

save()

fillcolor = color.cmyk(0,40,100,0)

...

restore()}

\pdfstate{% postscript interface

ps "gsave 0 .4 1 0 setcmykcolor"

...

ps "grestore"

}

A very nice example of the benefit from joining
typesetting beyond the page builder and PostScript
language support is this π-spiral submitted by Kees
van der Laan:

3
.1

4
1
5

9 2 6 5 3 5 8979
3

2
3

8
4

6
2
6

4338327950
2

8
8

4
1

9
7
1

6 9 3 9 9 3 7510
5

8
2

0
9

7
4
9

4459230781
6

4
0

6
2

8
6
2

0 8 9 9 8 6 2803
4

8
2

5
3

4
2
1

1706798214
8

0
8

6
5

1
3
2

8 2 3 0 6 6 4709
3

8
4

4
6

0
9
5

5058223172
5

3
5

9
4

0
8
1

2 8 4 8 1 1 1745
0

2
8

4
1

0
2
7

0193852110
5

5
5

9
6

4
4
6

2 2 9 4 8 9 5493
0

3
8

1
9

6
4
4

2881097566
5

9
3

3
4

4
6
1

2 8 4 7 5 6 4823
3

7
8

6
7

8
3
1

6527120190
9

1
4

5
6

4
8
5

6 6 9 2 3 4 6034
8

6
1

0
4

5
4
3

2664821339
3

6
0

7
2

6
0
2

4 9 1 4 1 2 7372
4

5
8

7
0

0
6
6

0631558817
4

8
8

1
5

2
0
9

2 0 9 6 2 8 2925
4

0
9

1
7

1
5
3

6436789259
0

3
6

0
0

1
1
3

3 0 5 3 0 5 4882
0

4
6

6
5

2
1
3

8414695194
1

5
1

1
6

0
9
4

3 3 0 5 7 2 7036
5

7
5

9
5

9
1
9

5309218611
7

3
8

1
9

3
2
6

1 1 7 9 3 1 0511
8

5
4

8
0

7
4
4

6237996274
9

5
6

7
3

5
1
8

8 5 7 5 2 7 2489
1

2
2

7
9

3
8
1

830119491..
.¼

(See http://gust.org.pl/projects/pearls/2010p.)

� Paweł Jackowski
GUST

Paweł Jackowski

