
Drawing tables: Graphic fun with LuaTEX

Paul Isambert

Introduction

I was deeply interested by Pawe l Jackowski’s pa-
per in TUGboat 32:1. Pawe l explained how graphic
manipulations could be made clean and simple and
powerful in LuaTEX. He also mentioned a partial
PostScript interpreter, so he can draw in PostScript
directly. The idea appealed to me — until I remem-
bered I don’t know PostScript; so I thought: why
use PostScript at all? Why not Lua as a language
for graphics?

I set to work and discovered a wonderful world.
Not being a mathematician (and computer graphics
require a good deal of math, if not especially ad-
vanced), and doing little graphics anyway, the code
I’ve written might never become a public package,
and I’d hate to see the ideas wasted. So I’ll describe
some of them here; meanwhile, it will also let us
learn a lot about tables, Lua’s principal basic data
structure, among other Lua and LuaTEX features.

State of the art

Drawing requires an input language (for the user to
describe what s/he wants) and an output language
(for the viewer to render); in an ideal world, both
coincide, as is the case with PostScript.

On the other hand, the PDF format is quite
lame (on purpose) when it comes to drawing. The
PDF format doesn’t know anything about variables,
functions, or flow control. You want to draw the
same line three times in different places? Well, you
have to describe it in its entirety three times; you
can’t say such things as “let l be a length, draw
a line of length l here and there”, not to mention
something like “if this is the first line, draw it in
red, otherwise draw it in blue”. What does PDF

understand, then? Not much more than “go here”,
“draw a line or a Bézier curve from here to there”
(with here and there as full coordinates, not vari-
ables), “fill this shape”, “use a line of width w”. To
put it simply, PDF is unusable as an input language.

On the other hand, more than thirty years after
its conception, TEX still can’t draw at all (also on
purpose). It’s not even good at basic mathematical
operations required by drawing, e.g. computing a
cosine. That’s why graphic extensions have been
developed to provide a comfortable environment to
users. The three best-known are (I can’t do them

146 TUGboat, Volume 32 (2011), No. 2

justice in these brief descriptions — please read their
manuals for a better view):

—MetaPost is a language and an interpreter, in-
spired by METAFONT, which produces PostScript
graphics (and SVG since v.1.2); the figures are then
added to the DVI file with \special, to be inserted
directly in the PostScript file (with dvips), and the
latter is converted to PDF with ps2pdf. The Meta-
Post compiler is embedded in LuaTEX, and thus it
no longer requires an external program (or external
files), but its output still requires conversion to PDF.

—PSTricks is a TEX interface for the PostScript lan-
guage; the same road as with MetaPost must be used
to produce PDF. PSTricks also provides such basic
structures as loops, missing in TEX.

—PGF/TikZ directly produces either PostScript or
PDF code, depending on the driver with which it is
used. Hence no conversion is needed. Like PSTricks,
PGF offers a proper input language.

The strengths of these three approaches are well-
known, and they are justly popular. What then
would be their weaknesses (with a little bad faith),
or rather, what would be the advantages of a Lua-
driven approach?

—No need for a new language. There is Lua, let’s
use Lua; variables or flow control are readily avail-
able. Well, of course, you have to learn Lua, but
using LuaTEX without knowing anything about Lua
would be a shame. Also, Lua is known for its sim-
plicity and is intended to be easy to learn.

—Benefit from a real programming language. Lua
has the usual mathematical functions which are (of
course) very useful when drawing (like computing
a cosine). But there is more. Suppose you want
to plot data, and those data are in an external file
in whatever format. It is easy to make Lua parse
the file and extract the information. In other words,
when you need programming that is not directly re-
lated to drawing, no need to consider dirty tricks
or to pray that a package exists: just use the same
language you’re already using.

—Access to TEX’s internals. Of course LuaTEX pro-
vides a Lua interface to TEX; the contents of a box,
the current font or the position on the page can be
queried at once. There is no disconnection between
drawing and typesetting.

—Transparency. That is, to me, the most impor-
tant feature. As we will see in what follows, you can
keep the implementation quite transparent, in the
sense that what is constructed can be manipulated
directly (i.e. without especially-tailored functions),

Paul Isambert



because objects (points, paths, . . . ) are simple ta-
bles. That means that the user can be given maxi-
mum control; actually, we don’t give anything, but
simply avoid taking it away.

From Lua to PDF

Now, we need to define some basic functions to pro-
duce PDF output. We’ll focus on a few PDF opera-
tors (there aren’t many more anyway):

x y m Move to point (x, y), which becomes the
current point.

x y l Append a straight line from the current
point to (x, y). In this operation and the next, the
ending point becomes the current point.

x1 y1 x2 y2 x3 y3 c Append a cubic Bézier
curve from the current point to (x3, y3) with control
points (x1, y1) and (x2, y2).

h Close the current path.
l w Sets the line width to l (to be used by the

next S statement).
S Stroke the current path.

PDF’s default unit is the PostScript point (the
big point, bp, in TEX), and that’s what we’ll use
here, even though it would be quite simple (and ac-
tually quite necessary) to define a whatever-unit-to-
bp function.

As an example, let’s draw a simple triangle:

0 0 m 20 0 l 10 15 l h S

Let’s now define a Lua interface to these operators:

function pdf_print (...)

for _, str in ipairs({...}) do

pdf.print(str .. " ")

end

pdf.print("\string\n")

end

function move (p)

pdf_print (p[1], p[2], "m")

end

function line (p)

pdf_print(p[1], p[2], "l")

end

function curve(p1, p2, p3)

pdf_print(p1[1], p1[2],

p2[1], p2[2],

p3[1], p3[2], "c")

end

function close ()

pdf_print("h")

end

function linewidth (w)

pdf_print(w, "w")

end

TUGboat, Volume 32 (2011), No. 2 147

function stroke ()

pdf_print("S")

end

The syntax, which uses tables, will be explained
in the next section. We use the pdf.print() func-
tion, which makes sense only in a \latelua call. So
let’s define our macro to tell TEX we’re switching to
Lua drawing (it is \long to allow blank lines in the
code; the resulting \par’s are filtered in \latelua):

\long\def\luadraw#1 #2{%

\vbox to #1bp{%

\vfil

\latelua{pdf_print("q") #2 pdf_print("Q")}%

}%

}

(The q and Q operator ensures the graphic state re-
mains local; this is PDF’s grouping mechanism, so
to speak.) And now the triangle can be drawn more
simply as follows. The Lua syntax foo{...} is a
function call, equivalent to foo({...}) when the
function takes a single table as its argument.

\luadraw 17 {

move{0, 0}

line{20, 0} line{10, 15}

close() stroke()

}

Well, simple? Maybe not. But at least we can use
loops. Here are three triangles growing in height
(from now on I won’t show the enclosing \luadraw):

for i = 1, 3 do

local x, y = i * 30, 15 + 5 * i

move{x, 0}

line{x + 20, 0} line{x + 10, y}

close() stroke()

end

The reader might think that explicitly specifying
the height (and width, if things were to be done
properly) for each picture is annoying; can’t it be
computed automatically? Well, yes and no. Yes,
because you can analyse the points in the picture
and retrieve the bounding box; no, because with
\latelua this would be done at shipout time, long
after the box has been constructed (so the informa-
tion comes too late).

To do things properly, one should compile the
code with \directlua and store all drawing state-
ments in a \latelua node created on the fly; so rel-
evant information could be retrieved (in both direc-
tions) when needed, whereas the PDF code is written
at shipout time, as it should be. I won’t investigate
that tricky issue here.

Drawing tables: Graphic fun with LuaTEX



More to the point

The functions above assume that points are denoted
as tables with (at least) two entries: the entry at
index 1 is the x-coordinate, the one at index 2 is the
y-coordinate. This is already much more powerful
than it seems; for starters, you can define and reuse
variables. Here’s a Bézier curve with the end points
attached to the control points:

local a, b, c, d = {0,0}, {10,20},

{35,25}, {45,5}

move(a) curve(b, c, d) stroke()

move(a) line(b)

move(d) line(c)

linewidth(.2) stroke()

But the real power comes from the ease of use
of such structures. Suppose you want to scale a pic-
ture by x in the x-direction and y in the y-direction.
The function to do that (working here on points) is
utterly simple:

function scale (p, x, y)

p[1], p[2] = p[1] * x, p[2] * y

end

Then if we add scale(a, 2, 1), scale(b, 2, 1),
scale(c, 2, 1) and scale(d, 2, 1) to our pre-
vious code, we get:

Other transformations, like rotation or translation,
can be as easily defined, as can any operations in-
volving tables. This means that any drawing system
in Lua is highly extensible, and most importantly
that it can be mastered deeply by the users with-
out much effort. That is what I meant above by
transparency.

Instructive playtime: let’s illustrate Pythago-
ras’ theorem with a hasty quill.

local function rand ()

return math.random(-100, 100) / 60

end

local function randomline(p1, p2)

local c1 = {p1[1] + rand(), p1[2] + rand()}

local c2 = {p2[1] + rand(), p2[2] + rand()}

p1[1], p1[2] = p1[1] + rand(), p1[2] + rand()

p2[1], p2[2] = p2[1] + rand(), p2[2] + rand()

linewidth(math.max(.5, rand()/1.5))

move(p1) curve(c1, c2, p2) stroke()

end

local a, b, c = {20,50}, {60,70}, {70,50}

local ab1, ab2 = {0,90}, {40,110}

local bc1, bc2 = {80,80}, {90,60}

local ca1, ca2 = {70,0}, {20,0}

148 TUGboat, Volume 32 (2011), No. 2

randomline(a,b) randomline(b,c) randomline(c,a)

randomline(a,ab1) randomline(ab1,ab2)

randomline(ab2,b)

randomline(b,bc1) randomline(bc1,bc2)

randomline(bc2,c)

randomline(c,ca1) randomline(ca1,ca2)

randomline(ca2,a)

randomline(b, {b[1], ca1[2]})

The randomline() function turns a line from p1

to p2 into a Bézier curve with the same endpoints,
albeit slightly displaced, and control points close to
those endpoints, so the curve approximates a line.
The line width is randomized too. All in all, it boils
down to manipulating table entries.

Here I have set the points so a right triangle is
drawn with a square on each side. It is not diffi-
cult to find those points automatically, once a and
b are given, and such functions are of course vital
(e.g. “find a point that is on a line perpendicular
to another line”); again that is table manipulation
with a bit of math. That’s what I have done for the
endpoint of the vertical line from the right angle: it
depends on other points.

Let’s get back to tables. The reader might have
remarked that the scale() function above didn’t
return anything, so one could not assign its result
to a variable. What, then, if one wants to have a
point P which is p scaled, but leaving p untouched?
The reader might think of something like this:

local P = p; scale(P, 2, 1)

That is a very bad idea: variables only point to ta-
bles, so in this case p and P point to the same table,
and changing P also changes p. If one wants a table
similar to another one, one should copy it:

function copy_table (t)

local T = {}

for k, v in pairs(t) do

if type(v) == "table" then

v = copy_table(v)

end

T[k] = v

end

setmetatable(T, getmetatable(t))

return T

end

Paul Isambert



This function creates a new table and sets all its
entries to the values in the original table; if a value
is a table, the function calls itself, so all subtables
are properly copied too. The set/getmetatable()

functions will be explained presently.
The function also illustrates the pairs() iter-

ator: given a table, it loops over all entries, in no
particular order, returning the key and the value for
each. There also exists the ipairs() iterator, which
browses only entries with an integer key, from 1 to
the first missing integer (for instance, a table with
entries at indices 1, 2 and 4 will be scanned with
ipairs() for the first two entries only).

Having to declare P = copy_table(p) is a bit
of an overkill (although it can’t be avoided some-
times); instead, all functions manipulating tables
should copy them beforehand, and return the new
table if necessary. So we could rewrite scale() as:

function scale (p, x, y)

local P = copy_table(p)

P[1], P[2] = P[1] * x, P[2] * y

return P

end

Now one can say local P = scale(p,2,1) and p

will be left unmodified; and if one wants to keep
the same variable, then: p = scale(p,2,0). If the
original table denoted by p isn’t referred to by an-
other variable, it will eventually be deleted to save
memory.

Metatables: The fast lane to paths

Up to now, we have drawn lines and curves one by
one, and that is not very convenient; it would be
simpler if one could define a sequence of points to
describe several lines and curves. Moreover, it would
be better still if one could assign paths to variables
instead of drawing them at once; then one would be
able to manipulate and reuse them.

What should be the structure of such a path?
For Lua, a table with subtables representing points
is a natural choice. However, not all points are
equal: some are endpoints to lines, some do not de-
fine a line but a movement, some are control points.
So they should have an entry, say type, to identify
themselves.

As an example, let’s make a table to represent
moving to (10, 10), then drawing a line to (20, 10),
then a curve to (0, 0) with control points (20, 5) and
(5, 0). This also illustrates how entries in tables are
declared: either with an explicit key, like type, or
implicitly at index n if the entry is the nth implicit
one.

TUGboat, Volume 32 (2011), No. 2 149

local path = {

type = "path",

{10, 10, type = "move"},

{20, 10},

{20, 5, type = "control"},

{5, 0, type = "control"},

{0, 0}

}

Note that endpoints have no type entry, so they
are considered the default points; on the other hand,
the path itself has a type, to be used below. Before
implementing such a construction, we need a new
function to draw the path. It will work as follows: if
a point is of the move type, use move() with it; if it is
of the control type, store it; finally, if it has no type,
use line() with it, or curve() if control points have
been stored. Also, the first point necessarily triggers
a move() command, whatever its type — it wouldn’t
make sense otherwise. We could also add dummy
point of type close to call the close() function,
but let’s stick to the essentials. Here we go:

function draw (path)

local controls

for n, p in ipairs(path) do

if n == 1 then

move(p)

elseif p.type == "move" then

move(p)

elseif p.type == "control" then

controls = controls or {}

table.insert(controls, p)

else

if controls then

curve(controls[1],

controls[2] or controls[1],

p)

else

line(p)

end

controls = nil

end

end

stroke()

end

The controls[2] or controls[1] construct means:
use the second control point if it exists, the first one
otherwise; i.e. draw a curve with overlapping control
points. (A better alternative would be for a single
control point to signal a quadratic Bézier curve; then
with a little bit of math we could render it with a
cubic.)

Now, how shall we define paths? We can use
explicit tables, as above, but it’s obviously inconve-
nient. We could use a path() function which, given
any number of points with an associated type, would

Drawing tables: Graphic fun with LuaTEX



return a path. But the top-notch solution would be
to be able to use a natural syntax, such as:

local path = a .. b - c - d .. e + f .. g

meaning: move to a, append a line to b, then a curve
from b to e with control points c and d, then move
to f and append a line to g.

Alas, the Lua .. operator is meant to concate-
nate strings, whereas the arithmetic operators ob-
viously require numbers . . . and we have defined
points as tables. Shall we find another way?

No, definitely not: we’ll make tables behave as
we want. To do so, we need metatables. What is
that? A metatable mt is a table with some special
entries (along with ordinary entries) which deter-
mine how a table t with mt as its metatable should
behave under some circumstances. The best-known
of those entries is __index, a function (or table)
called when one queries an nonexistent entry in t

(an obvious application is inheritance).
Here we should define points as tables with a

metatable with __concat, __add and __sub entries,
which determine the behavior when the tables are
passed as operands to those operators. The syntax
should be as follows: if two points are connected by
one of those operators, they should produce a path;
if two paths, or a point and a path, are the operands,
the same result should occur. In the example above,
a .. b should produce a path, to which then c is
added, etc.* Here are the functions:

local metapoint = {}

local function addtopath (t1, t2, type)

t1 = t1.type == "path" and t1 or {t1}

t2 = t2.type == "path" and t2 or {t2}

local path = {type = "path"}

setmetatable(path, metapoint)

for _, p in ipairs(t1) do

table.insert(path, copy_table(p))

end

local p = copy_table(table.remove(t2, 1))

p.type = type

table.insert(path, copy_table(p))

* Things are a bit more complicated: the minus
sign has precedence over the concatenation opera-
tor, so that given a .. b - c, first the path with b

and c is constructed, then a is added. Also, .. is
right associative, so that a .. b .. c also creates
the b-to-c path first. There is nothing wrong with
that, except that we can’t make do with a naive im-
plementation where paths are expected only as the
left operand. We wouldn’t do that anyway since we
want to be able to merge two already constructed
paths into one.

150 TUGboat, Volume 32 (2011), No. 2

for n, p in ipairs(t2) do

table.insert(path, copy_table(p))

end

return path

end

function metapoint.__concat (t1, t2)

return addtopath(t1, t2)

end

function metapoint.__sub (t1, t2)

return addtopath(t1, t2, "control")

end

function metapoint.__add (t1, t2)

return addtopath(t1, t2, "move")

end

The main function is addtopath: it creates a table
with type path, and adds all the points in the two
tables it connects by simply looping over all the en-
tries (if one of the tables is a point, it is put into a
table so we can use ipairs() on it). Special care is
taken for the first point of the second path, which
is the one concerned with the operator at hand; its
type is set to the third argument. With .., which
calls __concat, there is no third argument, hence
the point is a type-less default point (more precisely,
nil is assigned to type, which is equivalent to doing
nothing). On the other hand, __sub and __add call
__concat with the associated types. We systemat-
ically copy tables (representing points), so a path
doesn’t depend on the points it is defined with; if
the latter are modified, the path isn’t.

We can no longer declare points as simple two-
element tables, because we must set metapoint as
their metatable. So we’ll use a function:

function point(x, y)

local t = {x, y}

setmetatable(t, metapoint)

return t

end

Here we go: let’s redraw Pythagoras’ theorem,
properly this time!

local a, b, c = point(20, 50), point(60, 70),

point(70, 50)

local ab1, ab2 = point(0, 90), point(40, 110)

local bc1, bc2 = point(80, 80), point(90, 60)

local ca1, ca2 = point(70, 0), point(20, 0)

local triangle = a .. b .. c .. a

local ab_sq = a .. ab1 .. ab2 .. b

local bc_sq = b .. bc1 .. bc2 .. c

local ca_sq = c .. ca1 .. ca2 .. a

draw(triangle + ab_sq + bc_sq + ca_sq

+ b .. point(b[1], ca1[2]))

And the output follows:

Paul Isambert



We could easily rewrite our scale() function
to work on paths instead of points. But wouldn’t
it be nice if we could write path * 2 or path *

{2,3} to mean, respectively, scale(path, 2, 2)

and scale(path, 2, 3)? The reader probably can
guess the answer: of course we can! But wait a
minute; path is assumed to be a table with a proper
metatable to behave correctly with an operator like
multiplication. But that is obviously not the case for
{2, 3}, an anonymous table without a metatable,
let alone the number 2, which isn’t even a table!
As for the last interrogation (well, exclamation), all
types can have metatables in Lua, although only ta-
bles can be assigned metatables outside the C API.*
But that is no trouble: given two operands around
an operator, it suffices that one has the right meta-
table for the operation to occur; so if paths have a
metatable with the __mul entry, the shorthand to
scaling will work. I leave it as an exercise to the
reader. (Hint: Don’t forget to check the type of the
second argument.)

Another thing I’ll mention only briefly here. I
use a syntax like this:

local path = a .. b^{linewidth = 1}

.. c^{color = {1, 0, 0}}

Meaning: draw a line from a to b with a line width
of 1, then a line from b to c in red (the color model,
RGB here, being automatically detected by the num-
ber of values in the color table). The metatable

* One can also use the debug library, but as its
name indicates, it is not designed for ordinary pro-
gramming and shouldn’t be used for that, at least
not in code meant to be public.

TUGboat, Volume 32 (2011), No. 2 151

magic involved here should be clear to the reader
(using the __pow entry), although one must rewrite
the draw() function to take into account the infor-
mation thus attached to points. But there is a diffi-
culty, not related to Lua but to PDF: such parame-
ters as line width, color, etc., attach to the stroking
statement, not to the elements of a path. In other
words, if some lines and curves are stroked together,
then they will share the same parameters. We could
of course stroke them one by one, hence allowing dif-
ferent parameters for each, but then PDF wouldn’t
automatically join lines; this is illustrated below by
a one-stroke drawing next to a two-stroke drawing.

So we have to mimic PDF styles of joining lines,
and/or invent our own. That is doable (I have im-
plemented it), but explaining it here would double
the size of this paper.

Conclusion

I hope to have convinced the reader, if not to switch
at once to a Lua-based graphic interface, at least
that the simple addition of Lua to TEX (besides
all the wonderful opening up that takes place in
LuaTEX) is by itself a formidable move. Lua is
easy and powerful at once; here it is put to use with
graphics, but tables could also be used for index or
bibliography generation, and more generally to store
organized information. The key–value interface that
is so often (re)implemented in the TEX world is avail-
able almost immediately with tables, not to mention
metatables for default values. And of course, most
of the TEX interface in Lua is organized in tables.

Finally, although that might not be obvious in
this paper, LuaTEX brings yet another fundamental
change to TEX: it has become good at math!

� Paul Isambert
zappathustra (at) free dot fr

Drawing tables: Graphic fun with LuaTEX


