
TUGboat, Volume 33 (2012), No. 2 213

Approaching Asymptote

Michael Doob and Jim Hefferon

Asymptote is a relatively new tool to make graph-
ics that is integrated with the TEX family. On its
website1 its developers, Andy Hammerlindl, John
Bowman, and Tom Prince, characterize it as “a pow-
erful descriptive vector graphics language inspired
by METAPOST that features robust floating-point
numerics, automatic picture sizing, native three-di-
mensional graphics, and a C++/Java-like syntax en-
hanced with high-order functions.” It is free software,
released under the GNU General Public License.

Those developers have described Asymptote’s
advanced capabilities and algorithms in several pa-
pers (for instance, [1], [3], and [4]) and presentations
(see [2]). The comprehensive manual and additional
documentation is on the website. Also check out
Philippe Ivaldi’s wonderful gallery and tutorial.2

We are not developers, we are users (specifically,
mathematical users). This is a gentle introduction
aimed at people who need to produce mathematically-
oriented graphics, and who may find that this system
fits their needs and how they think.

We will first briefly compare Asymptote with
METAPOST, since that program may be familiar to
readers. We will then introduce capabilities that are
basic to Asymptote by using some figures, chosen
both to be close to what a person might produce
in everyday work and to illustrate the power of the
system. We will finish by comparing this system with
two others that have many of the same capabilities
and are widely used in the TEX community, TikZ
and PSTricks.

1 Tangent: Predecessor systems

METAFONT is a programming language written by
Donald Knuth to define the fonts for TEX. META-
POST

3 is an extension of METAFONT targeted at
PostScript output. It remains widely used for graph-
ics for mathematics and related fields, and it is under
active development.

METAPOST produces two-dimensional line art
of very high quality. A number of innovative al-
gorithms are built in. Its output is vector-based,
not raster — that is, not dot-by-dot — so making a
graphic larger or smaller is smooth. One of its key
strengths is solving systems of equations. For in-
stance, the language allows you to easily find the
intersection of two lines, so if you label an intersection
and later adjust one line a bit then the label moves

1 http://asymptote.sourceforge.net
2 http://www.piprime.fr/asymptote
3 http://www.tug.org/metapost.html

with the intersection. METAPOST is integrated with
TEX so that, for instance, you can produce labels
that use the LATEX style of the target document.

The most important point about METAPOST

(and Asymptote also) is that it is not mouse-driven.
Instead, you write a program to produce the out-
put. Below we will discuss some advantages of this —
how this allows us to construct figures in a way that
fits with our training — but one disadvantage is that
because the syntax of the METAPOST language is
unlike most other languages, users can find awkward
switching from programming in more everyday lan-
guages to programming in this one.

2 Meeting Asymptote: Two dimensions

Asymptote has essentially all of the capabilities of
METAPOST. Its syntax is Java-like. Asymptote has
a more extensive built-in function set than META-
POST. And it comes with many add-on modules
(METAPOST is relatively weak in this area). In the
next section we will highlight one add-on for drawing
in three dimensions but first we focus how Asymptote
does at METAPOST’s strength, two-dimensional line
art. Since Asymptote develops on those capabilities
it too makes those drawings with ease.

For a first taste we will walk through making an
elementary school star, as shown. The file star.asy

contains this Asymptote code.
size(.5inch);

path star;

for(int i=0; i < 5; ++i)

star=star--dir(90+144i);

star=star--cycle;

draw(star);

For the first line, Asymptote expects that you typ-
ically want to specify the size of the graphic, and
we’ve specified that its width is a half inch. In the
second through fifth lines we construct the path with
five line segments (as with METAPOST the -- op-
erator connects points with line segments while ..

makes Bezier curves) and close the path with cycle.
Finally we draw that path to the output picture (the
default line width is 1 PostScript point).

We compile that code to a graphic by running it
through Asymptote. You should be able to try this
also because there are versions for GNU/Linux, Mac,
or Windows. We use the executable that comes with
Ubuntu Linux but the commands below should work
anywhere. The command line

$ asy star

produces the output file star.eps in Encapsulated
PostScript. You can get just about any graphics
format, such as PDF.

$ asy -fpdf star.asy

Approaching Asymptote

214 TUGboat, Volume 33 (2012), No. 2

LATEX can use this output with the regular graphicx
command

\includegraphics{star.pdf}

or you can instead embed the Asymptote code inside
your LATEX file and the graphic will automatically
be inserted; see the documentation for that.

With that first taste of the system we can begin
to go further. Asymptote has four basic operations
that we will illustrate with four small listings.

The draw command is first. This .asy file

size(35pt);

path star;

for(int i=0; i < 5; ++i)

star=star--dir(90+144i);

star=star--cycle;

draw(star,linewidth(2)+lightblue+beveljoin);

draws this star.

The draw command has many options. For instance,
here we are drawing with a pen 2 points wide, in
blue, and with line segments joined in a bevel.

Asymptote’s second basic operation, fill, col-
ors in a closed path.

size(35pt);

path star;

for(int i=0; i < 5; ++i)

star=star--dir(90+144i);

star=star--cycle;

fill(star,lightblue);

Here we fill the star with blue.

Asymptote’s third basic operation is clip. It
omits from a shape the part that does not fit in the
clip-to area. For instance, we can drop the parts of
the star that lie outside a circle.

size(35pt);

path star;

for(int i=0; i < 5; ++i)

star=star--dir(90+144i);

star=star--cycle;

fill(star,lightblue);

clip(scale(0.618)*unitcircle);

(Comparing this star to the prior one shows that
after clipping Asymptote has expanded the shape to
fit in the declared width.)

The fourth basic operation, label, brings in
TEX text.

size(35pt);

path star;

for(int i=0; i < 5; ++i)

star=star--dir(90+144i);

star=star--cycle;

draw(star,linewidth(2)+lightblue);

label("\footnotesize 0",point(star,0),NE);

The label incorporates a LATEX command to produce
a subscript-sized label

0

that is northeast of the path’s starting point (the
initial point on the initial line segment is point 0 of
the path star, the initial point on the following line
segment is the path’s point 1, etc.).

Asymptote embeds these four core capabilities
inside of a powerful language with a familiar syntax.

We will illustrate with some examples of jobs
that are typical for our work. For each we will first
describe the figure and then examine the code listing
in more detail.

The next graphic began life as an illustration
for a calculus lecture.

x

y

For us, the natural way to produce this is not to use
a mouse to try to get a good approximation of the
true picture. Instead, we want to define the func-
tion f(x) = e−x and from that have the computer
generate the graph and fill the area below it.

That thinking goes a long way toward writing
the code, shown below. The key line is the fourth
one where, after importing modules and declaring
the horizontal size (TUGboat has columns that are
about three inches wide), we define the function f.
With that function, Asymptote makes the path that
is the function’s graph, fills the area between that
graph and the x-axis, and finally draws the curve.

include "jh.asy";

import graph;

size(3inch);

real f(real x) {return exp(-x);}

real xmin=-0.1, xmax=4.1;

real ymin=-0.1, ymax=1/exp(-.1);

path g=graph(f,xmin,xmax,operator ..);

path c=buildcycle(g,

(xmax,f(xmax))--(xmax,0),

Michael Doob and Jim Hefferon

TUGboat, Volume 33 (2012), No. 2 215

(xmax,0)--(xmin,0),

(xmin,0)--(xmin,ymax));

fill(c,THINPEN+FILLCOLOR+opacity(0.75));

xaxis("\footnotesize x",ymin,xmax,AXISPEN,

above=true);

yaxis(Label("\footnotesize y",align=E),AXISPEN,

above=true);

draw(g,FCNPEN);

There are two things to note about this listing.
The first is that to get the area to be filled we must
close in the left and right sides. The buildcycle

command creates the cyclic curve from the given
sequence of bounding curves; the left and right sides
are just line segments created with the -- operator.

The second thing to note is that this code im-
ports the standard Asymptote module graph to
bring in the commands graph, xaxis, and yaxis.
This is one of the add-on modules mentioned above
to help with common tasks. This listing also has
include "jh.asy" to bring in a local .asy file. It
contains some of the authors’ own commands and
defines some constants to give a set of graphics a
more uniform look. Here is jh.asy.

import fontsize; defaultpen(fontsize(9.24994pt));

import texcolors;

pen FILLCOLOR=lightyellow;

pen THINPEN=squarecap + linewidth(0.4pt);

pen AXISPEN=THINPEN + gray(0.3)

+opacity(.5,"Normal");

pen FCNPEN=squarecap +linewidth(1.5pt) + gray(0.3)

+opacity(.5,"Normal");

The prior example is written in a style where
we declare what we want and Asymptote figures out
how to draw it. The advantage of this over using a
mouse-based painting program is like the advantage
of separation of appearance from content that we
get when using a system built on TEX rather than
a word processor. The next example also illustrates
this writing style.

To show the area between two curves

our inclination is to define the two functions and then
ask Asymptote to use those definitions to generate
the paths, find the intersections, and then construct
and fill the desired area.

import graph;

size(0,1.5inch);

real p_up(real x) {return x^2-2*x+0;}

real p_down(real x) {return -x^2-x+2;}

real xmin=-1.2, xmax=2.1;

real ymin=-1.2, ymax=2.4;

path g_up=graph(p_up,xmin,xmax,operator ..);

path g_down=graph(p_down,xmin,xmax,operator ..);

pair ipoints []=intersectionpoints(g_up,g_down);

path c=

graph(p_up,ipoints[0].x,ipoints[1].x,

operator ..)

--

graph(p_down,ipoints[1].x,ipoints[0].x,

operator ..)

-- cycle;

fill(c,lightyellow);

draw(g_up,red);

draw(g_down,lightblue);

xaxis(above=true); yaxis(above=true);

path clippath = (xmin,ymin)--(xmax,ymin)

--(xmax,ymax)--(xmin,ymax)

--cycle;

clip(clippath);

In detail the code is much like the prior example.
After importing the module, we set the graphic size
(we set the height to be 1.5 inches; setting the width
to 0 has the system find the natural width). We
then define the functions p_up and p_down. We ask
Asymptote to make paths that are the two graphs
with given left and right endpoints, find where those
two intersect, and construct the closed curve c be-
tween the two (ipoints.x gives the first component
of ipoints). Asymptote fills the area inside, draws
the two graph paths, and finally clips the ends of the
parabolas that extend too far away from the part of
the picture that we want to show.

Asymptote includes a full suite of powerful pro-
gramming constructs. The next illustration is rec-
tilinear graph paper with three different line thick-
nesses.

Approaching Asymptote

216 TUGboat, Volume 33 (2012), No. 2

The code is a simple illustration of looping. We won’t
expand on it since readers who have programmed in
mainstream languages such as Java or Python will
recognize it right away.

size(3inch);

pen thinpen=(linewidth(.4)+extendcap+miterjoin);

pen mediumpen=(linewidth(1)+squarecap);

pen thickpen=(linewidth(1.8)+squarecap);

int xmin=-16, xmax=16;

int ymin=-12, ymax=12;

// draw horizontals

for (int k=xmin; k<=xmax; ++k) {

if (k==0) draw((k,ymin)--(k,ymax),thickpen);

else if (k%5 ==0)

draw((k,ymin)--(k,ymax),mediumpen);

else draw((k,ymin)--(k,ymax),thinpen);

}

// draw verticals

for (int k=ymin; k<=ymax; ++k) {

if (k==0) draw((xmin,k)--(xmax,k),thickpen);

else if (k%5 ==0)

draw((xmin,k)--(xmax,k),mediumpen);

else draw((xmin,k)--(xmax,k),thinpen);

}

The final two-dimensional graphic has a polar
flavor; it’s a logarithmic spiral.

The source shows how easily we can define and com-
bine functions, and again illustrates how the language
fits with how a person with mathematical training
thinks.

import graph;

size(3inch);

real pi=2*acos(0);

real a=0.5, b=0.1; // parameters for the shape

// polar to cartesian

real x(real t) { return a*exp(b*t)*cos(t);}

real y(real t) { return a*exp(b*t)*sin(t);}

pair f(real t) { return (x(t),y(t));}

draw(graph(x, y, 0, 6*pi, operator ..),lightblue);

In particular, note that the function f returns a pair
of reals, where the coordinate functions were defined
earlier in the listing.

3 In the limit: Three dimensions

In addition to its capabilities in two dimensions,
Asymptote comes with modules targeted at three-
dimensional graphics. These develop some of META-
POST’s ideas from two dimensions. For instance,
a core capability of METAPOST (and originally in
METAFONT) is to produce useful and good-looking
curves without requiring that the author completely
specify those curves. Asymptote extends this to 3D.

Our first graphic is a straightforward image,
another one that might appear in a calculus lecture.

Because it is a three-dimensional graph, we will im-
port a different module, but the thinking behind
the code is similar to what we’ve done earlier. In
addition to drawing the axes, we declare where the
plane intersects each axis, make a surface connecting
those three points, and have Asymptote draw and
fill the surface.

size(3inch);

import settings;

settings.render=10;

settings.maxtile=(50,50);

import graph3;

currentprojection=orthographic(2,2,2);

currentlight=(9,3,4);

// where plane intercepts x, y, and z axes

triple intercepts=(5,2,4);

path3 P = (intercepts.x,0,0)

--(0,intercepts.y,0)

--(0,0,intercepts.z)

--cycle;

draw(surface(P), lightblue+opacity(.85));

draw(P,red);

Michael Doob and Jim Hefferon

TUGboat, Volume 33 (2012), No. 2 217

dot(P,red);

axes3("\footnotesize x-axis",

"\footnotesize y-axis",

"\footnotesize z-axis",

(0,0,0),(6,3,5));

The listing imports the 3D module graph3. This
gives us a command to draw axes in three dimen-
sions and also lets us define the projection to be
orthographic (projection lines are orthogonal to the
plane to which the image is projected, that is, the
projection is from infinity) and to define the location
of the light source.

One more point about this graphic: we produced
it as a .png file using this command line.

$ asy -fpng intercepts_plane

We chose this format to show well on the printed
page; we used .pdf for the earlier figures but it
doesn’t show in our viewer because Asymptote’s de-
fault behavior is to produce a figure that can be ma-
nipulated with the mouse — turned, or zoomed to —
but that behavior relies on a viewer’s capabilities,
and some viewers lack that capability (TUGboat’s
printed pages also don’t have it!). Because of this
change to the .png raster format we also changed
Asymptote’s defaults to adjust render for 10 pixels
per big point to reduce jaggies and changed maxtile

to get around a common bug in the graphics driver.
Our final two figures are less prosaic. We want

to close with the message that Asymptote can indeed
do some fancy things, often with very little code.

First, here is a stellated icosahedron.

The construction is logical and easy to implement
using Asymptote. First define the twelve points of
the icosahedron, then use these points to define the
twenty faces and, finally, create a function that will

erect a pyramid on (i.e., stellate) each of these faces.
Asymptote itself takes care of the projections and
shading.

size(3inch);

import settings;

settings.render=10;

import three;

currentprojection=perspective(21,25,15);

currentlight=White;

real phi = (1+sqrt(5))/2;

// Vertices of the icosahedron are of the form

// (0, \pm 1, \pm\phi), (\pm\phi, 0, \pm 1),

// (\pm 1, \pm\phi, 0)

triple [] Pts = {

(0, 1, phi),

(0, -1, phi),

(phi, 0, 1),

(1, phi, 0),

(-1, phi, 0),

(-phi, 0, 1),

(phi, 0, -1),

(0, 1, -phi),

(-phi, 0, -1),

(-1, -phi, 0),

(1, -phi, 0),

(0, -1, -phi)

};

// Faces listed as triples (i,j,k) corresponding

// to the face through Pts[i], Pts[j] and Pts[k].

triple [] faces = {

// upper cap

(0,1,2), (0,2,3), (0,3,4), (0,4,5), (0,5,1),

// upper band

(11,6,7), (11,7,8), (11,8,9), (11,9,10),

(11,10,6),

// lower band

(10,1,2), (6,2,3), (7,3,4), (8,4,5), (9,5,1),

// lower cap

(3,6,7), (4,7,8), (5,8,9), (1,9,10), (2,10,6)

};

// draw the twelve vertices of the icosahedron

for (triple T: Pts)

draw(shift(T)*scale3(.08)*unitsphere,

yellow);

real t=3.0; // Scaling for stellation height

// Function to compute the stellation point

triple stell_point(triple u, triple v, triple w)

{return t/3*(u+v+w);}

void stellate(triple Face) {

int i=round(Face.x),

j=round(Face.y),

k=round(Face.z);

triple S=stell_point(Pts[i], Pts[j], Pts[k]);

draw(shift(S)*scale3(.08)*unitsphere,

yellow);

draw(S--Pts[i],red);

draw(S--Pts[j],red);

draw(S--Pts[k],red);

Approaching Asymptote

218 TUGboat, Volume 33 (2012), No. 2

draw(Pts[i]--Pts[j]--Pts[k]--cycle,red);

draw(surface(S--Pts[i]--Pts[j]--cycle),

lightgreen);

draw(surface(S--Pts[i]--Pts[k]--cycle),

lightgreen);

draw(surface(S--Pts[j]--Pts[k]--cycle),

lightgreen);

}

for (triple Face: faces) stellate (Face);

Finally, while the prior image is polyhedral, that
is, the sides are flat, our closing example is a real
surface in that it is curved.

As with the earlier listing, the code here merely
defines a function f and a region over which the graph
of that function will lie, and then asks Asymptote to
produce the graph. (The nx value gives the mesh).

size(3inch);

import settings; settings.render=10;

import graph3;

currentprojection=orthographic(2,4,1);

currentlight=(5,4,4);

real pi=2*acos(0);

path3 P=(-1,-1,0)--(-1,1,0)--(1,1,0)--(1,-1,0)

--cycle;

draw(surface(P),lightred,nolight);

real f(pair z)

{return 2+sin(z.x*pi)*sin(z.y*pi);}

draw(surface(f,(-1,-1),(1,1),nx=128), lightblue);

pen axispen=(linewidth(1.5)+squarecap);

axes3((-1.3,-1.3,0),(1.3,1.3,3.3),axispen);

4 Convergence of technologies:
Comparison with TikZ and PSTricks

The TEX community now has the luxury of choice
among three very capable graphics systems, Asymp-

tote, TikZ,4 and PSTricks.5 (We have left META-
POST off this list because at the moment three-
dimensional graphics are an issue.) These three
are similar. They are close in ability and very pow-
erful, and all are under active development. All
have extensive add-on sets that greatly increase their
usefulness.

Any of the three can be a great choice for your
projects. To some extent, which you choose will
be dictated by which one has modules that fit your
exact needs. It is also partly a matter of taste.

One point in favor of using Asymptote is that
it is a stand-alone program. This may reduce the ex-
tent to which your document depends on the current
software ecosystem because under natural develop-
ment you make a stand-alone graphic. Put another
way, Asymptote fits a bit better with the Unix phi-
losophy of having a number of tools, each of which
does one thing only, but does it well.

For us, a particularly appealing feature is that
Asymptote lifts many METAPOST constructs from
2D to 3D. It also has additional advanced functions.

Finally, programming in Asymptote is in a style
close to Java and C++, which you may find famil-
iar. For us, graphics is something that we do only
occasionally and so we must switch to this language
from others. Having familiar constructs helps that
switching.

References

[1] J. C. Bowman. Asymptote: Interactive
TEX-aware 3D vector graphics. TUGboat,
31(2):203–205, 2010. http://tug.org/

TUGboat/tb31-2/tb98bowman.pdf.

[2] John Bowman. Interactive TEX-aware 3D
vector graphics. TEX Users Group Annual
Meeting, 2010. http://river-valley.tv/

interactive-tex-aware-3d-vector-graphics.

[3] John C. Bowman and Andy Hammerlindl.
Asymptote: A vector graphics language.
TUGboat, 29(2):288–294, 2008. http:

//tug.org/TUGboat/tb29-2/tb92bowman.pdf.

[4] John C. Bowman and Orest Shardt. Asymptote:
Lifting TEX to three dimensions. TUGboat,
30(1):58–63, 2009. http://tug.org/TUGboat/

tb30-1/tb94bowman.pdf.

� Michael Doob
University of Manitoba

� Jim Hefferon
Saint Michael’s College
jhefferon (at) smcvt dot edu

4 http://sourceforge.net/projects/pgf
5 http://tug.org/PSTricks

Michael Doob and Jim Hefferon

