
108 TUGboat, Volume 40 (2019), No. 2

Type 3 fonts and PDF search in dvips

Tomas Rokicki

Abstract

PDF files generated from the output of dvips using
bitmapped fonts have not been properly searchable,
indexable, or accessible. While a full solution is
challenging, only minimal dvips changes are required
to support English language text, changes that are
at least two decades overdue. I will describe these
changes and discuss their limitations.

1 Introduction

The Type 3 fonts generated by dvips for bitmapped
fonts lack a reasonable encoding vector, and this
prevents PDF viewers from interpreting those glyphs
as text. This in turn prevents text search, copy and
paste, screen readers, and search engine indexing
from working correctly. Fixing this is easy, at least
for English text, and comes with no significant cost.

This is not nearly a full solution to create ac-
cessible multilingual PDF documents. Support for
eight-bit input encodings [2], explicit font encodings
[3], and direct generation of PDF can yield better
results. But if you want to use METAFONT fonts as-
generated and dvips, this is an important change.

I describe how I generated reasonable encoding
vectors for common METAFONT fonts, how dvips

finds these encoding vectors and embeds them in the
PostScript file, and how the current implementation
allows for future experimentation and enhancement.

2 A little history

When dvips was originally written in 1986, the lone
PostScript interpreter on hand was an Apple Laser-
Writer with 170K available memory. I treated Post-
Script as just a form of compression for the page
bitmap, doing the bare minimum to satisfy the re-
quirements for Level 1 Type 3 fonts. One of those
requirements was to supply an /Encoding vector,
despite the fact that at the time, the vector was
completely unnecessary in rendering the glyphs. Not
considering that people might someday use that en-
coding vector for glyph identification, on that fateful
day in 1986 I generated a semantically nonsensical
but syntactically acceptable vector (/A0–/H3 in base
36) for all bitmapped fonts, and this vector remains
to this day, subverting any attempt to search copy,
or use screen readers.

Replacing this encoding vector with something
more reasonable allows PDF viewers to properly un-
derstand what characters are being rendered, at least
for English-language text.

Tomas Rokicki



TUGboat, Volume 40 (2019), No. 2 109

3 A sample

The following TEX file, cribbed from testfont.tex

but using only a single font, will be used for illustra-
tion.

\hsize=3in \noindent

On November 14, 1885, Senator \& Mrs.~Leland

Stanford called together at their San

Francisco mansion the 24~prominent men who

had been chosen as the first trustees of The

Leland Stanford Junior University.

?‘But aren’t Kafka’s Schlo{\ss} and {\AE}sop’s

{\OE}uvres often na{\"\i}ve vis-\‘a-vis the

d{\ae}monic ph{\oe}nix’s official r\^ole

in fluffy souffl\’es?

\bye

When you run this through TEX and dvips (giving
the -V1 option to enforce bitmapped and not Type 1
fonts), and then ps2pdf, the resulting PDF does not
support text search in most PDF viewers. In Ac-
robat with copy and paste it almost works; the c’s
are dropped throughout (San Francisco becomes San
Fran is o). The c’s are dropped because the origi-
nal dvips encoding uses /CR as the name for this
character, and it is apparently interpreted as a non-
marking carriage return. Ligatures also don’t work.
In MacOSX Preview (the default PDF viewer for the
Mac), selecting text appears to fail (it actually works,
but the selection boxes are too small to see that any-
thing has actually been selected) and no characters
are recognized as alphabetic. In Chrome PDF pre-
view, selecting text gives a random note appearance
with each word separately selected by its bounding
box and no alphabetic characters recognized.

Conversely, when you process the file with Type 1
fonts, all text functions perform normally, except
that accented characters are detected as two sepa-
rate characters (the accent and the base character).
The critical difference is not Type 3 (bitmaps) ver-
sus Type 1 (outline fonts), but rather the lack of a
sensible encoding vector in the Type 3 font.

4 First attempts and failure

If I manually copy the Encoding vector from the
output of dvips using Type 1 fonts and put that in
the font definition for the Type 3 fonts, the situation
improves; now Adobe Acrobat properly supports
text functions (including ligatures but not accented
characters). The other PDF viewers now recognize
alphabetic characters, but they still have a number
of problems.

With Preview, if you use command-A (to select
all the text) and then command-C (to copy it), and
then copy the result into a text editor (or a word

processing program “without formatting”), you get
the following mishmash of text:

On Novemb er 14, 1885, Senator & Mrs.
Leland Stanford called mansion the 24
together at their San Francisco prominent
men who had b een cho- Stanford sen as the
first trustees of The Leland Junior Æsop’s
University. ¿But aren’t Kafka’s Schloß and
Œuvres often na”ıve vis-‘a-vis the dæmonic
phœnix’s official rˆole in fluffy souffl’es?

In addition to the broken words and split accented
characters, if you look carefully you will notice some
surprising and substantial word reordering! What
could be going on?

5 Refinements and success

All PDF viewers use some heuristics to turn a group
of rendered glyphs into a text stream. The heuris-
tics differ significantly from viewer to viewer. The
most important heuristic appears to be interpreting
horizontal escapement into one of three categories:
kerns, word breaks, and column gutters. Preview
was failing so badly because it was recognizing rivers
in the paragraph as separating columns of text. To
satisfy the PDF viewers I had access to, I made two
additional modifications to each bitmapped font.

First, I adjusted the font coordinate system, as
defined by the so-called font matrix. The default
Adobe font coordinate system has 1000 units to the
em, while the original dvips uses a coordinate sys-
tem with one unit to the pixel both for the page
and for the font, and doesn’t use the PostScript
scalefont primitive. But not using scalefont ap-
parently makes some viewers think all the fonts are
just one point high, and they use spacing heuristics
appropriate for such a font. By providing a font ma-
trix more in line with conventional fonts, and using
scalefont, PDF viewers make better guesses about
the appropriate font metrics for their heuristics.

Second, I provide a real font bounding box. The
original dvips code gives all zeros for the font bound-
ing box, which is specifically allowed by PostScript,
but this confuses some PDF viewers. So I wrote code
to calculate the actual bounding box for the font
from the glyph definitions.

With these adjustments, using dvips with bit-
mapped fonts and ps2pdf generates PDF files that
can be properly searched with most PDF viewers —
at least, for English language text.

6 Other languages: No success

I would have liked things to work with other lan-
guages as well, but was not able to get it to work.
Clearly the PDF viewers are recognizing characters by

Type 3 fonts and PDF search in dvips



110 TUGboat, Volume 40 (2019), No. 2

the glyph names, but this appears to work only with
a small set of glyph names. I hoped that those listed
in the official Adobe Glyph List [1] would work, but
in my experiments they (for the most part) did not.
I also tried Unicode code point glyph names such as
/uni1234 and /u1234 but neither of these formats
worked in the PDF viewers I tried. I also experi-
mented with adding a cmap to the font, with no suc-
cess, and even tried some lightly documented Ghost-
View hacks, but was able to achieve only distressingly
partial success for most non-Roman characters.

Even if the individual glyphs are recognized,
problems remain with accents, and more generally,
virtual fonts. With a standard seven-bit encoding,
accents are generally rendered as two separate char-
acters, where the PDF viewer expects to see only
a single composite character. Further, the entire
virtual font layer would need to be mapped in some
fashion, as the PDF contains the physical glyphs that
are often combined in some way to provide the seman-
tic characters. Supporting this would have required
significantly more effort and heuristics, and there are
already efforts in this direction from people much
more knowledgeable and capable than I am. The
most logical general solution is to use properly coded
input, such as UTF-8, and where transformation to
multiple glyphs is necessary, embed the appropriate
mapping information directly in the PDF file.

The lack of success for other languages dimin-
ishes these proposed changes, but the changes are
still important as they do provide reasonable support
for English-language documents. Since PDF viewers
are a moving target, as are the PostScript to PDF

converters, the implementation provides for some
future experimentation and extension.

7 Finding font encodings

In order to provide more than a proof of concept, I
had to determine appropriate glyph names for the
fonts provided with TEX Live, as well as provide
a mechanism for end users to add their own glyph
names for their own personal fonts.

Over the years others have translated nearly
all of the METAFONT fonts provided with TEX Live,
and as part of that process, reasonable encoding
vectors have been created for the glyphs. I decided
to leverage this work, so I wrote a script that lo-
cated all the METAFONT sources in the TEX Live
distribution, all the corresponding Type 1 fonts, and
any encoding files used in the relevant psfonts.map
file. A big Perl script chewed on all of this, extract-
ing encoding vectors and creating appropriate files
for dvips. Some of the encoding vectors use glyph
names that are not particularly useful, and some use

glyph names based on Unicode code points that are
not currently recognized by the PDF viewers I tried.
I did not want to edit the names in any way; I aimed
for functional equivalence to using the Type 1 fonts.
If improvements are made to the Type 1 font glyph
names, or to the PDF viewers, I wanted to be able
to pick up those improvements.

I considered having dvips read the encoding
vectors directly from the Type 1 fonts, rather than
extracting them and storing them elsewhere, but
decided against this; I wanted dvips to use appro-
priate glyph names even if the Type 1 fonts didn’t
exist at all. This does introduce redundancy which
can potentially lead to an inconsistency in the glyph
names, but the fonts are currently mostly stable, and
the glyph name extraction process can be repeated
as needed if meaningful changes are made.

8 Storing and distributing encodings

After scanning all of the relevant METAFONT files
and corresponding Type 1 files, I found there were
2885 fonts; storing the encodings separately one
per font would require an additional 2,885 files in
TEX Live, occupying about 5 megabytes. I felt this
was excessive for the functionality added.

Karl Berry suggested combining all the encod-
ings into a single file, along with a list of fonts using
any particular encoding. Since there were only 138
distinct encodings, this gave tremendous compres-
sion, letting me store all of the encodings for all of
the fonts in a single file of size 183K. This also en-
abled me to distribute a simple test Perl script that
mimicked the changes so people could try them out
without updating their TEX installation.

This combined file, called dvips-all.enc, pro-
vides the default encoding used by the 2885 dis-
tributed TEX Live METAFONT fonts. In every case
that dvips looks for an encoding, e.g., for cmr10,
it first searches for dvips-cmr10.enc and only falls
back to the information in the combined file if the
font-specific file is not found. This permits users to
override the provided encodings, as well as define
their own encoding for local METAFONT fonts.

The format of the encoding file is slightly dif-
ferent from that of other encoding files in TEX Live.
The encoding file should be a PostScript fragment
that pushes a single object on the operand stack.
That object should either be a legitimate encod-
ing vector consisting of an array of 256 PostScript
names, or it should be a procedure that pushes such
an encoding vector. It should not attempt to define
the /Encoding name in the current dictionary, as
some other encoding file formats do. A sample file,
one that can be used for cmr10 (and many other

Tomas Rokicki



TUGboat, Volume 40 (2019), No. 2 111

Computer Modern fonts) is:

[/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon

/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi

/dotlessj/grave/acute/caron/breve/macron/ring

/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash

/suppress/exclam/quotedblright/numbersign

/dollar/percent/ampersand/quoteright/parenleft

/parenright/asterisk/plus/comma/hyphen/period

/slash/zero/one/two/three/four/five/six/seven

/eight/nine/colon/semicolon/exclamdown/equal

/questiondown/question/at/A/B/C/D/E/F/G/H/I/J

/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft

/quotedblleft/bracketright/circumflex

/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l

/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash

/hungarumlaut/tilde/dieresis

128{/.notdef}repeat]

9 Deduplicating encodings

The encodings inserted in the fonts do use a certain
amount of PostScript memory, and this memory us-
age is not presently accounted for in the memory
usage calculation of dvips. The memory usage is
small and modern PostScript interpreters have signif-
icant memory. Further, I doubt anyone actually sets
the dvips memory parameters anymore anyway. So
this is unlikely to be an issue. But to minimize the
effect, and also to minimize the impact on file size,
encodings that are used more than once are combined
into a single instance and reused for subsequent fonts.

10 The dvips Changes

Almost all changes to dvips are located in the single
new file bitmapenc.c, although a tiny bit of code
was added to download.c to calculate an aggregate
font bounding box, and the font description structure
extended to store this information. I also added code
to parse command line options and configuration file
options to disable or change the behavior of the new
bitmap encoding feature.

By default this feature is turned on. If no en-
coding for a bitmapped font is found, no change is
made to the generated output for that font.

11 Testing the changes without updating

You can test my proposed changes to the dvips

output files without updating your distribution or
building a new version of dvips. The Perl script
addencodings.pl [4] reads a PostScript file gener-
ated by dvips on standard input and writes the
PostScript file that would be generated by a modi-
fied dvips on standard output. No additional files
are required for this testing; the default encodings
for the standard TEX Live fonts are built into the
Perl script.

12 How to use a modified dvips

In general, dvips usage is unchanged. Warnings in
the functionality of the bitmap encoding are disabled
by default, so as to not disturb existing workflows;
this may change in the future.

I add a single command line and configuration
option, using the previously unused option character
J. The option -J0 disables the new bitmap encoding
functionality. The option -J or -J1 enables it but
without warnings, and is the default. The option -J2

enables it with warnings for missing encoding files.

13 Extension support

Remember that the encoding file is an arbitrary Post-
Script fragment that pushes a single object on the
operand stack, and that object can be a procedure. I
permit it to be a procedure to support experimenting
with other changes to the font dictionary to improve
text support in PDF viewers. For instance, if a tech-
nique for introducing Unicode code points for glyphs
into a PostScript font dictionary is found and sup-
ported by various PostScript to PDF converters, such
a procedure could introduce the requisite structures.
The procedure will not be executed until the font
dictionary for the Type 3 font is created and open.

To test this functionality, I created a rot13.enc

file that defines a procedure that modifies the En-
coding vector to swap single alphabetic characters
much like the rot13 obfuscation common during the
Usenet days. With this modification, copying text
from a PDF copies (mostly) content that has been
obfuscated (except for ligatures). This brings us full
circle to the current unreadable text copied from the
original dvips.

References

[1] Adobe. Adobe glyph list specification.
https://github.com/adobe-type-tools/

agl-specification, August 2018.

[2] A. Jeffrey and F. Mittelbach. inputenc.sty.
https://ctan.org/pkg/inputenc, 2018.

[3] R. Moore. Include CMap resources in PDF files
from pdfTEX. https://ctan.org/pkg/mmap,
2008.

[4] T. G. Rokicki. Type 3 search code. https:

//github.com/rokicki/type3search, July
2019.

� Tomas Rokicki
Palo Alto, California
United States
rokicki (at) gmail dot com

Type 3 fonts and PDF search in dvips

https://github.com/adobe-type-tools/agl-specification
https://github.com/adobe-type-tools/agl-specification
https://ctan.org/pkg/inputenc
https://ctan.org/pkg/mmap
https://github.com/rokicki/type3search
https://github.com/rokicki/type3search

	Introduction
	A little history
	A sample
	First attempts and failure
	Refinements and success
	Other languages: No success
	Finding font encodings
	Storing and distributing encodings
	Deduplicating encodings
	The dvips Changes
	Testing the changes without updating
	How to use a modified dvips
	Extension support

